什么是蓝牙蓝牙的传输与应用
什么是蓝牙蓝牙的传输与应用
蓝牙可连接多个设备,克服了数据同步的难题。那么你对蓝牙了解多少呢?以下是由学习啦小编整理关于什么是蓝牙的内容,希望大家喜欢!
蓝牙的介绍
学习啦在线学习网 蓝牙( Bluetooth® ):是一种无线技术标准,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换(使用2.4—2.485GHz的ISM波段的UHF无线电波)。蓝牙技术最初由电信巨头爱立信公司于1994年创制,当时是作为RS232数据线的替代方案。
如今蓝牙由蓝牙技术联盟(Bluetooth Special Interest Group,简称SIG)管理。蓝牙技术联盟在全球拥有超过25,000家成员公司,它们分布在电信、计算机、网络、和消费电子等多重领域。IEEE将蓝牙技术列为IEEE 802.15.1,但如今已不再维持该标准。蓝牙技术联盟负责监督蓝牙规范的开发,管理认证项目,并维护商标权益。制造商的设备必须符合蓝牙技术联盟的标准才能以“蓝牙设备”的名义进入市场。蓝牙技术拥有一套专利网络,可发放给符合标准的设备。
蓝牙的传输与应用
蓝牙的波段为2400–2483.5MHz(包括防护频带)。这是全球范围内无需取得执照(但并非无管制的)的工业、科学和医疗用(ISM)波段的 2.4 GHz 短距离无线电频段。
蓝牙使用跳频技术,将传输的数据分割成数据包,通过79个指定的蓝牙频道分别传输数据包。每个频道的频宽为1 MHz。蓝牙4.0使用2 MHz 间距,可容纳40个频道。第一个频道始于2402 MHz,每1 MHz一个频道,至2480 MHz。有了适配跳频(Adaptive Frequency-Hopping,简称AFH)功能,通常每秒跳1600次。
最初,高斯频移键控(Gaussian frequency-shift keying,简称GFSK) 调制是唯一可用的调制方案。然而蓝牙2.0+EDR 使得 π/4-DQPSK和 8DPSK 调制在兼容设备中的使用变为可能。运行GFSK的设备据说可以以基础速率(Basic Rate,简称BR)运行,瞬时速率可达1Mbit/s。增强数据率(Enhanced Data Rate,简称EDR)一词用于描述π/4-DPSK 和 8DPSK 方案, 分别可达2 和 3Mbit/s。在蓝牙无线电技术中,两种模式(BR和EDR) 的结合统称为“BR/EDR射频”
学习啦在线学习网 蓝牙是基于数据包、有着主从架构的协议。一个主设备至多可和同一微微网中的七个从设备通讯。所有设备共享主设备的时钟。分组交换基于主设备定义的、以312.5µs为间隔运行的基础时钟。两个时钟周期构成一个625µs的槽,两个时间隙就构成了一个1250µs的缝隙对。在单槽封包的简单情况下,主设备在双数槽发送信息、单数槽接受信息。而从设备则正好相反。封包容量可长达1、3、或5个时间隙,但无论是哪种情况,主设备都会从双数槽开始传输,从设备从单数槽开始传输。
蓝牙的机密安全性
概况
学习啦在线学习网 另请参见:基于通信网络的移动安全和攻击
蓝牙拥有机密性、完整性和基于SAFER+分组密码的定制算法的密钥导出。蓝牙密钥生成通常基于蓝牙PIN,这是双方设备都必须输入的。如果一方设备(如耳机、或类似用户界面受限的设备)有固定PIN,这一过程也可能被修改。配对过程中,初始密钥或主密钥通过E22算法生成。 E0流密码也用于加密数据包、授权机密性,它是基于公共加密的、也就是之前生成的链路字或主密钥。这些密钥可用于对通过空中接口传输的数据进行后续加密,密钥有赖于双方或一方设备中输入的PIN。
学习啦在线学习网 Andreas Becher于2008年发表了蓝牙漏洞信息的利用概况。
2008年9月,美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)发布了蓝牙安全指南(Guide to Bluetooth Security),供相关机构参考。该指南描述了蓝牙的安全功能,以及如何有效的保护蓝牙技术。蓝牙技术有它的优势,但它易受拒绝服务攻击、窃听、中间人攻击、消息修改及资源滥用。用户和机构都必须评估自己所能接受的风险等级,并在蓝牙设备的生命周期中增添安全功能。为减轻损失,NIST文件中还包括安全检查列表,其内包含对蓝牙微微网、耳机和智能读卡器的创建和安全维护的指南和建议。
蓝牙2.1发布于2007年,相应的消费设备最早出现于2009年,为蓝牙安全(包括配对)带来了显著的改观。更多关于这一改变的信息,请参见“配对机制”部分。
Bluejacking
主要文章:Bluejacking
Bluejacking是指用户通过蓝牙无线技术向对方不知情的用户发送图片或信息。常见的应用包括短信息,比如“你被Bluejack了”。Bluejacking不涉及设备上任何数据的删除或更改。Bluejacking可能涉及取得对移动设备的无线控制和拨打属于Bluejack发起者的付费电话。安全上的进展已经缓解了这一问题。
安全历史进程
一、2001–2004
2001年,贝尔实验室的Jakobsson和Wetzel from发现并指出了蓝牙配对协议和加密方案的缺陷。2003年,A.L. Digital 公司的Ben和Adam Laurie发现蓝牙安全实施上的一些重要缺陷有可能导致个人信息的泄露。随后Trifinite Group的Martin Herfurt在德国汉诺威电脑展(CEBIT)的游乐场中进行了现场试验,向世界展示了这一问题的重要性。 一种称为BlueBug的新型攻击被用于此次实验。2004年,第一个生成通过蓝牙在移动电话间传播的病毒出现于塞班系统。卡巴斯基实验室最早发现了该病毒,并要求用户在病毒传播之前确认未知软件的安装。病毒是由一群自称“29A”的病毒开发者作为验证概念编写,并发送防病毒机构的。因此,它应被看作是对蓝牙技术或塞班系统的潜在威胁,而非实际的威胁,原因是该病毒并未散播至塞班系统之外。2004年8月,一个世界纪录级的实验(另请参见Bluetooth sniping)证实,如果有定向天线和信号放大器,2类蓝牙无线电的范围可扩增至1.78km(1.11mi)。这就造成了潜在的安全威胁,因为攻击者将能够在相当程度的远距离之外接入有缺陷的蓝牙设备。攻击者想要与目标设备建立连接,还必须能够接受其发出的信息。如果攻击者不知道蓝牙地址和传输通道(尽管它们在设备使用状态下几分钟之内就能推导出来),就不可能对蓝牙设备进行攻击。
二、2005年
学习啦在线学习网 2005年1月,一种称为Lasco.A的移动恶意程序蠕虫开始针对采用塞班系统(60系列平台)的移动电话,通过蓝牙设备自我复制并传播至其他设备。一旦移动用户允许接收另一设备发送来的文件(velasco.sis),这一蠕虫即可开始自动安装。一旦安装成功,蠕虫变回开始寻找并感染其他的蓝牙设备。此外,蠕虫会感染设备上其他的.SIS文件,通过可移动的媒体文件(保全数位、CF卡等)复制到另一设备上。蠕虫可导致移动电话的不稳定。
2005年4月,剑桥大学安全研究员发表了针对两个商业蓝牙设备间基于PIN配对的被动攻击的研究结果。他们证实了实际攻击之快,以及蓝牙对称密钥建立方法的脆弱。为纠正争议缺陷,他们通过实验证实,对于某些类型的设备(如移动电话),非对称密钥建立更可靠且可行。
学习啦在线学习网 2005年6月,Yaniv Shaked和Avishai Wool发表文章,描述了蓝牙链路获得PIN的被动和主动方法。如果攻击者出现在最初配对时,被动攻击允许配有相应设备的攻击者窃听通信或冒名顶替。主动攻击方法使用专门建立的、必须插入到协议中特定的点的信息,
让主从设备不断重复配对过程。然后再通过被动攻击即可攻获PIN码。这一攻击的主要弱点是它要求用户在设备受攻击时根据提示重新输入PIN。主动攻击可能要求定制硬件,因为大多数商业蓝牙设备并不具备其所需的定时功能。
学习啦在线学习网 2005年8月,英国剑桥郡警方发布警告,称有不法分子通过有蓝牙功能的电话跟踪放置于车中的其他设备。警方建议当用户把手提电脑或其他设备放置于车中时,须确保任何移动网络连接均处于禁用状态。
三、2006年
2006年4月, Secure Network和F-Secure的研究人员发布了一份报告,提醒人们注意可见状态下的设备之多,并公布了有关蓝牙服务的传播、以及蓝牙蠕虫传播进程缓解的相关数据。
四、2007年
2007年10月,在卢森堡黑客安全大会上,Kevin Finistere和Thierry Zoller展示并发布了一款课通过Mac OS X v10.3.9 和 v10.4上的蓝牙进行通信的远程跟外壳(root shell)。它们还展示了首个PIN 和 Linkkeys 破解器,这是基于Wool 和 Shaked的研究。
看过“蓝牙的传输与应用”的人还看了:
4.蓝牙用英语怎么说