学习啦 > 学习方法 > 通用学习方法 > 学习方法指导 > 立体几何入门学习方法

立体几何入门学习方法

时间: 威敏1027 分享

立体几何入门学习方法

  立体几何一直是高中数学的一大难点,在已经掌握了平面几何的基础知识后,要进一步学好立体几何的基础知识却并不容易。下面学习啦小编收集了一些关于立体几何入门学习方法,希望对你有帮助

  立体几何学习方法

  第一,建立空间观念,提高空间想象力

  为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。还可以通过画图帮助理解,从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。

学习啦在线学习网   第二,掌握基础知识和基本技能

  直线和平面是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

  第三,积累解决问题的策略

  如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点——一个固有的或确定的数学关系。

  第四,重视证明过程

  各类考试中都有立体几何论证的考察,论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法形式写出。

  第五,充分运用“转化”思想

  解立体几何的问题,要充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。通过转化可以使问题得以大大简化。

  第六,平时注意规范训练

学习啦在线学习网   在平时要养成良好的答题习惯,按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。

  立体几何三大题型学习方法

学习啦在线学习网   1.平行、垂直位置关系的论证的策略:

学习啦在线学习网   (1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

学习啦在线学习网   (2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

  (3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

  2.空间距离的计算方法与技巧:

  (1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

学习啦在线学习网   (2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

  (3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

  3.三视图问题

学习啦在线学习网   (1)熟悉常见几何体的三视图,如锥体、柱体、台体、球体的三视图。

学习啦在线学习网   (2)组合体的分解。由规则几何体截出一部分的几何体的分析。

  (3)熟记一些常用的小结论,诸如:正四面体的体积公式是______;面积射影公式_____。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

  (4)平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

学习啦在线学习网   (5)与球有关的题型,只能应用“老方法”,求出球的半径即可。

学习啦在线学习网   (6)立体几何读题:

学习啦在线学习网   1.弄清楚图形是什么几何体,规则的、不规则的、组合体等。

学习啦在线学习网   2.弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。

  3.重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。

  (7)解题程序划分为四个过程:

学习啦在线学习网   ①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。

学习啦在线学习网   ②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。

  ③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。

  ④回顾。对所得的结论进行验证,对解题方法进行总结
猜你感兴趣:

1.立体几何的学习方法

2.高中立体几何学习方法

3.高中数学立体几何学习方法总结

4.如何学好高中数学的立体几何

5.如何学好数学立体几何

6.高二数学立体几何知识点

3154215