初二数学寒假复习方法
寒假来临的时候,我们要怎样复习数学这门课程呢?下面是学习啦小编收集整理的初二数学寒假复习方法以供大家学习。
学习啦在线学习网 初二数学所学的部分,占整个初中阶段知识点的一半。这是一个很惊人的力量。中考几何的重头戏:三角形全等和它的三大转换,都要在初二全部讲完。这一部分学习的难度,大家可以问问学校里的学哥学姐,即使是在初一学习不错的,对三角形全等这一块的中高等题还是感到很麻手。除此之外,还有平行四边形和梯形的加入。
学习啦在线学习网 初二这一年,之所以说对数学很关键,不单单因为数学任务变多变难,还有一个原因:一门新的理科类学科要和数学抢时间,那就是“物理”。
一轮复习:
学习啦在线学习网 数学的第一轮复习开始于寒假,复习主要内容为绝大部分中考大纲中要求的考点:三角形、四边形、圆、方程与不等式、一次函数、反比例函数、二次函数等。题目选在中考及模拟考试中出现过的经典题目,或予以改编加工,其目的为回顾初中三年的知识点,复习和巩固基础知识及解题方法。目标为基础、中档题目0失分,在开学测试中取得优异成绩!
二轮复习:
此轮复习以攻克各类常考专题为主,主要包括函数图象点的存在性专题、图形运动及变换专题、代数综合应用专题、几何变换专题及探究性题目专题、中考易错专题等(专题名称在春季课程上或有些许调整)。选题以能够凸显专题特点的题目为主、题目循序渐进,并附加高端模型的总结及解题思路的扩展,力争攻克第一次模拟考试。
三轮复习:
学习啦在线学习网 代数综合、几何综合以及代几综合将成为此轮复习的主要复习对象。以剖析题目、联系知识、寻找模型和方法为主线进行压轴题目的分析与解答。争取在二模考试中解决压轴题,获得高分或满分。
四轮复习:
历经了2014年的一模和二模之后,第四轮复习便会悄然而至,通过对两轮复习多体现出来的中考趋势进行分析,并以此进行选题和预测中考。所选题目同2013年中考考察可能性较大的题目相同,以便最大程度的使学子适应新的中考趋势、做好考前的最后冲刺!
基础巩固——专题攻克——压轴突破——趋势预测及查漏补缺,历经四轮复习稳扎稳打,步步为营,知识体系由点及面、重点突出。一轮复习对接开学测试,二轮复习对接一模考试,三轮复习对接二模考试,最后四轮冲刺复习目标2016中考!
初二数学的重要思想推荐:
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支棗-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与 “形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练学习啦在线学习网,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
学习啦在线学习网 3、“对应”的思想
学习啦在线学习网 “对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数 “2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。