学习啦>实用范文>工作计划>教学工作计划>

小学六年级下册数学《数学广角──鸽巢问题》教案范文五篇

时间: 浣静1289 分享

  历史是时代的见证,真理的火炬,记忆的生命,生活的老师和古人的使者。下面是小编给大家准备的小学六年级下册数学《数学广角──鸽巢问题》教案范文,供大家阅读。

  小学六年级下册数学《数学广角──鸽巢问题》教案范文一

  教学目标

学习啦在线学习网   1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。

  重点难点 经历抽屉原理的探究过程,并对抽屉原理的问题模式化

学习啦在线学习网   学生笔记(教师点拨) 学 案 内 容

学习啦在线学习网   一、知识回顾:(2分钟)

  二、学生自学:(15分钟)

  (1)自学例1

学习啦在线学习网   把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

学习啦在线学习网   (1) 学生思考各种放法。

  (2) 第一种放法: 第二种放法:

学习啦在线学习网   第三种放法: 第四种放法:

  教学过程:

  5÷2=2……1 (至少放3本)

  7÷2=3……1 (至少放4本)

学习啦在线学习网   9÷2=4……1 (至少放5本)

  1、提出问题。

学习啦在线学习网   不管怎么放,总有一个文具盒里至少放进( )铅笔。为什么?

  如果每个文具盒只放( )铅笔,最多放( )枝,剩下(  )枝还要放进其中的一个文具盒,所以至少有(   )铅笔放进同一个文具盒。

  (1) 说一说你有什么体会。

  二自学例2

学习啦在线学习网   1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?

  2、摆一摆,有几种放法。

  不难得出,不管怎么放总有一个抽屉至少放进( )本书。

  3、说一说你的思维过程。

学习啦在线学习网   如果每个抽屉放( )本书,共放了( )本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

  如果一共有7本书会怎样呢?9本呢?

  4. 你能用算式表示以上过程吗?你有什么发现?

  总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

  三、小组合作交流(8分钟)

  四、教师评价释疑。(10分钟)

学习啦在线学习网   五、当堂检测(5分钟)

  1. 做一做。

  (1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

学习啦在线学习网   (2) 说出想法。

学习啦在线学习网   如果每个鸽舍只飞进( )鸽子,最多飞回( )鸽子,剩下(  )鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

  2. 做一做

学习啦在线学习网   8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

学习啦在线学习网   想:每个鸽舍飞进( )鸽子,共飞进( )鸽子。剩下( )鸽子还要飞进其中的1个或2个鸽舍,所以,至少有( )鸽子要飞进同一个鸽舍里。

  小学六年级下册数学《数学广角──鸽巢问题》教案范文二

  教学目标:

  1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

  2. 通过操作发展学生的推理能力,形成比较抽象的数学思维。

  教学重点:

  经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

  教学难点:

学习啦在线学习网   运用 “鸽巢问题”,解决一些简单的实际问题。

  教具准备:

学习啦在线学习网   每组都有相应数量的杯子、小球、扑克牌、多媒体课件。

  教学过程:

  一、游戏引入:

  师:我们今天来做个游戏,游戏要求,把全班分成若干小组,每小组的组长手中有3个小球和2个杯子,要求把所有小球全都放进杯子里。同学们看看老师猜的对不对。

  请三位小组长上台来猜另外三小组同学小球是怎么放的。生讲师板书。

学习啦在线学习网   师小结:一定有一个杯子里至少有两个小球。

  同学们你们想不想知道为什么老师会知道呢?板书课题:鸽巢问题

  二、探究原理:

学习啦在线学习网   1、动手摆一摆,感受原理。

  (1)探究物体个数比抽屉多1的情况。

学习啦在线学习网   例1、现在要把4支铅笔放进3个文具盒里,会有几种不同的放法?请大家摆一摆,边摆边记录。

  全班分小组摆一摆。

学习啦在线学习网   各组长边摆边记录。教师板书,全班同学报数,一起记录。

学习啦在线学习网   联系小球放进杯子的游戏,引导学生讲出:不管怎么放,总有一个杯子至少放有2根小棒。

学习啦在线学习网   师:总有一个杯子至少有……

学习啦在线学习网   师:A、总有是什么意思?

  师:B、“至少”又是什么意思? “至少’的意思是2根或2根以上。

  师:如此往下想,7根小棒放在6个杯子里,

  10根木棒放进9个杯子里

学习啦在线学习网   100根木棒放进99个杯子里会有怎么样的结论?

  要证明这个结论能想出一种简便的方法来吗?大家讨论讨论。

  学生讨论。

  师:想出什么办法?谁来说说

学习啦在线学习网   刚才这样分是怎样分?为什么要用平均分,才能证明这个结论?

学习啦在线学习网   (边摆边说。如果用算式怎样表示?板书(4÷3=1……1)

学习啦在线学习网   学生得出:只要小棒数量比杯子数量多1都有这样的结论。

学习啦在线学习网   2、探究商不是1的情况。

  讨论7本书放进3个抽屉里,想知道结论吗?还要摆吗?

  那8本书进3个抽屉里。

  10本书放进3个抽屉里又是怎样?你发现了什么?

学习啦在线学习网   我发现 7÷3=2……1

  8÷3=2……2

学习啦在线学习网   10÷3=3……1

  板书:至少数=商+1。

  小结:我们今天探究的原理就是数学中有名的鸽巢原理。

  三、本课总结:

  鸽子÷鸽巢 = 商…… 余数

学习啦在线学习网   至少数 = 商+1

  四、用今天知识来解决生活中的一些实际问题。

  1、做一做

学习啦在线学习网   2、玩扑克的游戏。

  五、板书:略

  小学六年级下册数学《数学广角──鸽巢问题》教案范文三

  教学目标:

  1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

学习啦在线学习网   2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

  3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

  教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。

学习啦在线学习网   教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

  教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。

  教学过程:

学习啦在线学习网   一、 唤起与生成

  1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

  2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

  3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。

学习啦在线学习网   确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

  4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

  二、探究与解决

学习啦在线学习网   (一)、小组探究:4放3的简单鸽巢问题

学习啦在线学习网   1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

  2、审 题:

  ①读题。

  ②从题目上你知道了什么?证明什么?

学习啦在线学习网   (我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

学习啦在线学习网   ③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

  “不管怎么放”:就是随便放、任意放。

学习啦在线学习网   “总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

  “至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

  3、探 究:

学习啦在线学习网   ①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

学习啦在线学习网   ②活 动:小组活动,四人小组。

  听要求!

  活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

  听明白了吗?开始!

学习啦在线学习网   3、反 馈:汇报结果

学习啦在线学习网   同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

学习啦在线学习网   可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

  追 问:谁还有疑问或补充?

  预设:说一说你比他多了哪一种放法?

学习啦在线学习网   (2,1,1)和(1,1,2)是一种方法吗?为什么?)

  只是位置不同,方法相同

  5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

学习啦在线学习网   (1)逐一验证:

  第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

  符合总有一个笔筒里至少有2支铅笔。

学习啦在线学习网   第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

学习啦在线学习网   第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

  第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

  符合条件的那个笔筒在三个笔筒中都是最多的。

  (2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

  (3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。

学习啦在线学习网   所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

  (二)自主探究:5放4的简单鸽巢原理

  1、过 渡:依此推想下去

学习啦在线学习网   2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

  3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

学习啦在线学习网   4、验 证:你们的猜测对吗?让我们来验证一下。

  活动要求:

学习啦在线学习网   (1)思考有几种摆法?记录下来。

学习啦在线学习网   (2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

学习啦在线学习网   好,开始。(教师参与其中)。

学习啦在线学习网   5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

  分别是:5000 、4100、 3200、 3110 、2200、2111

  (课件同步播放)

学习啦在线学习网   预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

  6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

学习啦在线学习网   7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

  ①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

学习啦在线学习网   ②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

学习啦在线学习网   不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。

学习啦在线学习网   (三)、探究鸽巢原理算式

  1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?

  还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?

  (好麻烦,是啊, 想想都觉得麻烦!)

学习啦在线学习网   2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?

学习啦在线学习网   其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?

学习啦在线学习网   3、平均分:为什么这样分呢?

学习啦在线学习网   生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)

学习啦在线学习网   师:你为什么要先在每个笔筒中放1支呢?

学习啦在线学习网   生:因为总共只有4支,平均分,每个笔筒只能分到1支。

  师:为什么一开始就要去平均分呢?

  生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。

  师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?

  生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

  师:看来,平均分是保证“至少”数的关键。

  4、列式:

学习啦在线学习网   ①你能用算式表示吗?

  4÷3=1……1?? 1+1=2

  ②讲讲算式含义。

  a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。

  b、真棒!讲给你的同桌听。

学习啦在线学习网   5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔?? 请用算式表示出来。

  5÷4=1……1?? 1+1=2

  说说算式的意思。

  a、同桌齐说。

学习啦在线学习网   b、谁来说一说?

  师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。

  (四)探究稍复杂的鸽巢问题

  1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?

学习啦在线学习网   2、题组(开火车,口答结果并口述算式)

学习啦在线学习网   (1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有()支铅笔

学习啦在线学习网   (2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有()支铅笔

学习啦在线学习网   7÷5=1…… 2?? 1+2=3?

  7÷5=1…… 2?? 1+1=2

  出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)

  你认为哪种结果正确?为什么?

  质 疑:为什么第二次还要平均分?(保证“至少”)

  把铅笔平均分才是解决问题的关键啊。

学习啦在线学习网   (3)把笔的数量进一步增加:

  8支铅笔放5个笔筒里,至少数是多少?

学习啦在线学习网   8÷5=1……3?? 1+1=2

学习啦在线学习网   (4)9支铅笔放5个笔筒里,至少数是多少?

  9÷5=1……4?? 1+1=2

  (5)好,再增加一支铅笔?至少数是多少?

学习啦在线学习网   还用加吗?为什么?? 10÷5=2?? 正好分完, 至少数是商

  (6)好再增加一支铅笔,,你来说

  11÷5=2……1?? 2+1=3?? 3个

  ①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)

学习啦在线学习网   ②那同学们再想想,铅笔的支数到多少支时,至少数还是3?

学习啦在线学习网   ③铅笔的支数到多少支的时候,至少数就变成了4了呢?

  (7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3?? 5+1=6??

  (8)算的这么快,你一定有什么窍门?(比比至少数和商)

学习啦在线学习网   (9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)

  3、观察算式,同桌讨论,发现规律。

  铅笔数÷笔筒数=商……余数” “至少数=商+1”

学习啦在线学习网   你和他们的发现相同吗?出示:商+1

  4、质疑:和余数有没有关系?

  (明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)

  (五)归纳概括鸽巢原理

  1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?

  100÷30=3…… 10?? 3+1=4 至少数是4个

  (因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)

  2、推广:

  刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:

学习啦在线学习网   (1)书本放进抽屉

  把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

学习啦在线学习网   8÷3=2……2? 2+1=3

学习啦在线学习网   (因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)

  (2)鸽子飞进鸽巢

学习啦在线学习网   11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?

学习啦在线学习网   11÷4=2……3? 2+1=3

  答:至少有 3只鸽子飞进同一只鸽笼。

  (3)车辆过高速路收费口(图)

  (4)抢凳子

学习啦在线学习网   书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。

学习啦在线学习网   3、建立模型:鸽巢原理:

  同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:

  知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

学习啦在线学习网   揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。

学习啦在线学习网   5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?

  有信心用我们发现的原理继续接受挑战吗?

  3、巩固与应用

学习啦在线学习网   那我们回头看看课前小魔术,你明白它的秘密了吗?

  1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。

  答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。

  正确应用鸽巢原理是表演成功的秘密武器!

  2、飞镖运动

学习啦在线学习网   同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。

  课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。

  在练习本上算一算,讲给你的同桌听听。

  谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)

学习啦在线学习网   41÷5=8……1? 8+1=9

  在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。

学习啦在线学习网   3、我们六年级共有367名学生,其中六(2班)有49名学生。

学习啦在线学习网   (1)六年级里至少有两人的生日是同一天。

  (2)六(2)班中至少有5人的生日是在同一个月。

  他们说的对吗?为什么?

  同桌讨论一下。

学习啦在线学习网   谁来说说你们的想法?

学习啦在线学习网   (1、367人相当于鸽子,365、或366天相当于鸽巢......

  ? 2、49人相当于鸽子,12个月相当于鸽巢......)

  真理是越辩越明!

学习啦在线学习网   3、星座测试命运

  说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?

  你用星座测试过命运吗?你相信星座测试的命运吗?

学习啦在线学习网   我们用鸽巢原理来说说你的想法。

  全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。

  4、柯南破案:

学习啦在线学习网   ?? “鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?

  (课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:

  年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?

学习啦在线学习网   大爷:是什么手机号呢?这么贵?

学习啦在线学习网   年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!

  老大爷:哦!

  听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。

学习啦在线学习网   聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?

  (手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)

  4、 回顾与整理。

  这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!

  下 课!

  板书设计:

学习啦在线学习网   鸽? 巢? 问? 题

  ?? 物体? 抽屉 至少数

学习啦在线学习网   4? ÷ 3 =? 1……1?? ?? 1+1=2?

学习啦在线学习网   5? ? ÷ 4? =? 1……1? ? ? 1+1=2?

  7? ? ÷ 5? =? 1……2? ? ? 1+1=2??

学习啦在线学习网   9 ?? ÷ 5? =? 1……4? ?? 1+1=2??

学习啦在线学习网   11 ? ÷? 5? =? 2……1 ?? ? 2+1=3??

  28?? ?? ÷ 5? =? 5……3? ?? 5+1=6??

  100?? ? ÷ 30? =? 3……1 3+1=4?

  m ÷ n = 商……余数? 商+1

  小学六年级下册数学《数学广角──鸽巢问题》教案范文四

  一、教材分析:

  本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。

学习啦在线学习网   在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

  “鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维学习啦在线学习网能力和解决实际问题的能力。

  二、三维目标:

  1、知识与技能:

学习啦在线学习网   引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

学习啦在线学习网   2、过程与方法:

  (1)经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等

  活动的学习方法,渗透数形结合的思想。

学习啦在线学习网   (2)学会与人合作,并能与人交流思维过程和结果。

  3、情感态度与价值观:

  (1)积极参与探索活动,体验数学活动充满着探索与创造。

  (2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体

  验学数学、用数学的乐趣。

  (3)通过“鸽巢原理”的灵活应用,感受数学的魅力。

  (4)理解知识的产生过程,受到历史唯物注意的教育。

  三、教学重点:

  应用“鸽巢原理”解决实际问题,引导学会把具体问题转化成“鸽巢问题。

  四、教学难点:

  理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

  五、教学措施

  1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

学习啦在线学习网   2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。

  3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。

  六、课时安排:3课时

  鸽巢问题-------------------1课时

  “鸽巢问题”的具体应用------1课时

  练习课---------------------1课时

  小学六年级下册数学《数学广角──鸽巢问题》教案范文五

  【学情分析】

  抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。

  1.年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

  2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。

  【教学方法

  1.借助学具,学生自主动手操作、分析、推理、发现、归纳、总结原理。

学习啦在线学习网   2. 适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。

  3.引导学生构建解决抽屉原理类问题的模式:明确“待分的物体”→哪是“抽屉”→ 平均分 →商+1

学习啦在线学习网   4.完善评价体系,进行小组捆绑,激励学生全员参与,体验成功的乐趣。

  5.师生课前准备:①学生:每组5根小棒、4个杯子;课件②学生记录自己是哪一个月出生的。③教师准备1副牌。

  【教学目标】

  知识目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

  能力目标:经历抽屉原理的探究过程,通过实践操作发展学生的类推能力,形

  成比较抽象的数学思维。

  情感目标:通过“抽屉原理”的灵活应用感受到数学的魅力。

学习啦在线学习网   【教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

  【教学难点】理解抽屉原理,并对一些简单实际问题加以“模型化”。

学习啦在线学习网   【教具、学具准备】学生:每组5根小棒、4个杯子;课件

  【教学过程】

学习啦在线学习网   一、联系生活,激趣导入

学习啦在线学习网   用一副牌展示“抽屉原理”。 (师生合作完成魔术)

  师:同学们喜欢魔术吗?今天老师客串一下魔术表演,想见识见识吗?请全班同当老师的助手,每一个小组有一副牌,大家知道一副扑克牌有54张去掉两张王牌,剩52张,现在用它变一个魔术。这个魔术的名字叫“猜花色”。在组长的组织下每人随意抽五张牌先反扣在桌上。我猜,每位同学的手中至少有两张花色是相同的。是这样的吗?见证奇迹的时刻到了。请翻牌看看,老师猜得准么? 生:猜对了。

学习啦在线学习网   生:猜对了,给点掌声吧。老师为什么猜的那么准,想知道吗?其实这里面蕴藏着一个非常有趣的数学原理----抽屉原理(板书课题)相信你们认真学习后,会明白的。

  (设计意图: 老师通过一个魔术展示了在生活里 “抽屉原理”问题中的一种,勾起了学生对这个魔术很好奇心,为原本枯燥的数学课注入了活力。)

  师:看看这节课的学习目标。(指名读一读)

  (设计意图: 建立明确的目标,就会引起师生注意的集中性和指向性,引起对某类知识,某种能力的强烈注意。就能在最短的时间,最省力地完成“三个维度”的目标,最有效的提高教学质量。)

学习啦在线学习网   二、动手实验、 探究新知

学习啦在线学习网   师:为研究这个原理,老师为大家准备了什么?

  生:小棒和杯子(板书:小棒、杯子)

学习啦在线学习网   师:那我们今天就用小棒和杯子做几个有趣的数学实验来研究这个原理。

  (一)第一步:研究4根小棒放入3个杯子中的现象。

  1、请看大屏幕:

学习啦在线学习网   师:把4根小棒放进3个杯子里,请小组的同学摆摆看,在动手之前请看活动要求:

学习啦在线学习网   ①4人为一组摆一摆,要求将小棒全部放进去,允许某个杯子空着。②边摆边记录下来,(记录时:可以用1 表示小棒,用 0 表示杯子(画一画)看看一共有几种摆法?

学习啦在线学习网   师补充:每个组要认真记录不同摆法。希望每个小组分工合作愉快,开始

  2.汇报展示

  要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:

学习啦在线学习网   师:大部分学生都摆完了,谁来说说,你们是怎么摆的?

学习啦在线学习网   学习小组派代表到台前展示成果。要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:

学习啦在线学习网   4 0 03 1 0

学习啦在线学习网   2 2 02 1 1

  (引导学生明确虽然摆放的顺序不一样,但是同一种放法)

  师:老师欣赏这组同学的操作步骤,按一定顺序,可以做到不重复,不遗漏。

  师:还有别的放法吗?

  生:没有了。

  (3)引导观察,得出结论。

  引导学生观察4种方法,从而得出:总有一个杯子里面至少有2根小棒。

  师:是的,这4种放法,不管怎么放,你有什么发现?)

  1组:(可能会出现不同发现)

  2组:我们发现不管怎么放,总会有一个小杯子里面至少有2根小棒。强调至少!总有

  师:说啥?再说一遍。

  生:

  师:还有谁发现了什么?

  生:

学习啦在线学习网   (设计意图:这个环节鼓励每个小组都说出自己的看法,因为学生思维能力的不同,得出的结论也就不同。只有通过多种思维的碰撞,学生的逻辑思维能力、解决问题的能力才能提高,对抽屉原理的认识才会更加深刻。)

学习啦在线学习网   师:再次观察四种方法,哪种方法能直接得到这个结论。

学习啦在线学习网   这种分法,实际就是先怎么分的?(引导平均分)

学习啦在线学习网   师:关于平均分有没有问题?我有一个问题,为什么用平均分这一种方法,就能得出总有一个杯子里的至少有2根小棒这个结论。

  (二)第二步:研究5根小棒放入4个杯子中的现象。

  1、课件出示:5根小棒放进4个杯子里你感觉会出现什么情况。

学习啦在线学习网   师:再往下继续研究,5根小棒放在4个小杯子里你感觉会出现什么情况,

  生猜测:5根小棒放在4个小杯子,不管怎么放,肯定有一个杯子里至少有2根小棒。

  师:对不对需要实验验证,我们还要像刚才那样一一把所有摆法都列举出来吗?用什么方法操作验证这个结论对错就可以了。

  生:用平均分的方法就可以了。

学习啦在线学习网   师:咱们试试看,小组合作交流,用这种平均分的方法操作验证,并像黑板上那样记录在学案里。

  2、展示摆法,引导观察发现:

  师:哪一个小组愿意展示分享一下?

  生:5根,每个小杯子放一根,剩下的一根放在其中的一个小杯子。(实际演示一下)

  师:谁和他的分法一样的,这种分法,实际就是先怎么分的?(板书:平均分)

  课件演示

学习啦在线学习网   师:,既然用平均分的方法就可以解决这个问题,会用算式表示这种方法吗?

学习啦在线学习网   生:5÷4=1??1

  师:能解释算式里每个数的意义吗?

  生:5表示小棒数,4表示杯子是,商1表示平均每个杯子放进1根小棒,余数1表示还剩1根小棒。

学习啦在线学习网   师小结:要想发现存在着“总有一个杯子里一定至少有2根”,先平均分,余下1根,不管放在那个杯子里,一定会出现“总有一个杯子里一定至少有2根”。 )

  3、学以致用---照这样的思路,继续往前走:

学习啦在线学习网   课件出示:把7根小棒放进6个小杯子里,总有一个杯子里至少有( )根,。

学习啦在线学习网   100根小棒放进99个小杯子里,总有一个杯子里至少有( )

  根。

  师:这么大的数字,同学们这么快就得出了结论,你是不是发现了什么规律了?(小棒的数量与杯子的数量有什么关系?))还要操作验证吗?说说你的想法。

  学生独立解决以上问题,在展示汇报时学生要说明白解决问题的方法是什么。

  4、引导学生知识点小结:

  师:小棒数比杯子数多1,总有一个盒子至少放进的小棒数怎么算,你用谁加上谁就是我们想要结果?

291753