高等代数学习精选心得
学习啦在线学习网高等代数是理工科大学生的基础课, 对数学系的学生尤其重要.它的教学质量的高低直接关系到理工科大学生的专业基础和后继课程的学习, 提高其教学质量对培养高层次人才具有重要意义。下面给大家带来一些关于高等代数学习的心得,希望对大家有所帮助。
高等代数学习精选心得篇1
学习啦在线学习网高等数2113学与高中数学相比有很大的不同,内5261容上主要是引进了一些4102全新的数学思想,特别是无限分1653割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。具体的学习方法因人而异,但有些基本的规律大家都得遵守。我具体说一下列在下面:
1。书:课本+习题集(必备),因为学好数学绝对离不开多做题(跟高中有点像,呵呵);建议习题集最好有本跟考研有关的,这样也有利于你将来可能的考研准备。
2。笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3。上课:建议最好预习后听听。(其实我是从来不听课的,除非习题课),听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但remember,高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
学习啦在线学习网4。学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,小弟你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。
学习啦在线学习网基本网络就是上面说的笔记上的总结的知识提纲,也要重视。
学习啦在线学习网基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的。
题型都明白了,比如各种极限的求法。
学习啦在线学习网好了,这些都做到了,高数应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此若时间充裕还可以学习一下数学软件,如matlab、mathematic,比如算积分都有现成的函数,通过练习可以加强对概念的掌握;此外还看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道真的很有用(不知你学的什么专业)
最后再说说怎么提高理解能力的问题(一家之言)
1。举例具体化。如理解导数时,自己也举个例子,如f(x)=X^2+8。
2。比喻形象化。就是打比方,比如把一个二元函数的图形想成邻家女孩的头上的草帽。
3。类比初级化。比如把二元函数跟一元函数类比,泰勒公式想成二次函数,好理解。
4。多书参考法。去你们图书管借几本不是一个作者写的高数教材,虽然讲的内容都一样,但不同的作者往往对同一个问题从不同的角度表述,对你来说,从很多不同的角度、例子理解同一个问题,往往就容易多了。Just have a try!
5。不懂暂跳法。对一些定理的证明、推导过程等,如果一时不明白没关系,暂时放过,记下这个疑点待以后解决就可以了。
高等代数学习精选心得篇2
作为一个过来人,我觉得这是比较正常的,题主不需要有多余焦虑。在我大一刚开始学数分和高代时,整个思维模式也受到了“新数学”的洗礼,有一个适应的过程。可能,对于大学之前没怎么接触过这些课程的大部分人,都会有与你类似的感受。
学习啦在线学习网反正我们班在大一之后,有好多弃坑转专业的,认为大学“数学”跟想象的不一样,整天就是概念证明啥的,有些枯燥无味。
学习啦在线学习网我想这主要是因为我们被中学的数学束缚太久,习惯了“计算式”的数学。
学习啦在线学习网想一想,我们在大学之前所接触的数学,主要是初等代数,平面和立体几何,三角函数和圆锥曲线,多项式和不等式等内容,课上所学也注重技巧的运用,和形式的计算及简单的推导。事实上,这些绝大多数是三百年前甚至两千年前的知识,关于现代数学的涉及基本没有。
学习啦在线学习网即使高中时接触到了导数,极值等有关极限的概念,但没有讲更深。很多概念,还是停留在特定模式的计算和“只可意会不可言传”的理解层次上。
而近代数学的发展,特别是分析的严谨化以来,“数学的本质已经不是计算,对数学的精通不意味着能够做复杂计算或者熟练推演符号。近代数学的重心已从计算求解转变为注重理解抽象的概念和关系。
证明不仅仅是按照规则变换对象,而是从概念出发进行逻辑推 演。”(出自微信公众号:中国科学院数学与系统科学研究院—数学是什么?)所以,从高中到大学,所学的数学,内容上可以说是有了质的提升和深化。尤其数分里,很多知识点的定义,真真表现了分析的严谨和自成体系的理论。像极限的表述,就把一个脑海里变动的过程所导致的结果,合理地用定性的语言作了描述。
这很“数学”,不再是意会的说不清道不明。虽然会遇到困难,但是我相信当你耐心地钻进去,体会概念之间的联系,证明的精巧和严谨会极大地刺激你的求知欲,这是数学专业学生的必经之路。
学习啦在线学习网我认为你目前的状态,首先要能清楚地理解每一个概念和定义。如果有不清晰的点,请教一下老师,这是事半功倍的,因为以老师多年的数学功底和教学经验,可以帮助你更准确地把握一些关键知识点和定理的运用,平时要及时地多做练习,掌握一些解题的技巧。
可以买一些教材配套的参考书啥的,遇到不会的,学习一下标准的解答,也不要死磕,毕竟没有那么多时间和精力。一切学习,都是从模仿开始的,根据书上定理或者例题的证明思路,要学着去尝试证明别的题。
学习啦在线学习网总之,要多读,多想,多做,这样你的学习能力的积累和理解力才能提升。学好这些基础课是极其重要的,后续的很多课程:像实变函数、泛函分析,抽象代数等都是数分高代的抽象版,如果一开始的学习里积攒很多不扎实的点,会让以后变得更加难以捉摸。
我自己现在就是,当开始真正研究问题时,不得不耗费精力去弥补之前的不足之处。
守得云开见月明,我觉得如果你是真正爱数学,能作为一名数学专业的学生去感受数学所表现出的优美和深刻是很幸运的,你有机会去真正理解数学是什么?加油,我相信你会做的越来越好
高等代数学习精选心得篇3
虽然不是数学系学生(化学系学生),但是觉得也勉强可以回答一下。
数学分析我也坐等大佬填坑,我数学分析学的并不好;高等代数倒是可以说说一点一孔之见,有点长,欢迎友好交流。
学习啦在线学习网高等代数是研究线性关系的代数学,是当代代数学的基础。那么既然提到线性关系,那么最容易想到的一定是一次齐次多项式(不论是一元多项式,如 #FormatImgID_0# ,或者多元多项式 #FormatImgID_1# ),你可以想一下,在同一平面内的两条直线,有哪几种关系?
这个我想大家都想的明白:相交、平行或者重合。相互“平行”的几个一次齐次多项式组成的方程(条件独立)不就是线性方程组吗?相互“相交”的不就是多项式环(几个多项式依赖于乘法结合)?相互“重合”的不就是重因式吗?(重合可以看做相交的特殊情况,就是有解的情况下有无穷解,所以划到多项式环一点问题没有)
学习啦在线学习网所以,国内较为常见的打开思路是要么先讲一元多项式环(或者多项式环),以张贤科先生《高等代数学》和孟道骥先生《高等代数与解析几何》的书为例;要么先讲线性方程组,以丘维声先生《高等代数》为例。姚慕生老师的书《高等代数学》开篇就是行列式,按照个人观点来看其实有问题的。从行列式的三种定义(从线性变换对应矩阵表示的角度来讲,明显不合适,观点太超前了;从映射的角度来讲,对初学者太抽象;从逆序数组合乘积再求和来讲,没有直观意义,只是沦为计算工具)来看,其十分不适合放在开篇第一章的位置。相应的,我是非常不待见考研数学线性代数经典书籍同济版本的线性代数的,这书我相信开篇行列式的打开方式令无数考研同学对于代数从此一叶障目,不见泰山。
学习啦在线学习网个人比较推崇丘维声老师的思路。原因有以下几点:
第一,不仅结构相对清晰,而且思路叙述相对完备。举个例子,从线性方程组的完全求解(即完全解决线性方程组的求解方法——Gauss-Jordan算法和解的结构)开始,第一章叙述求解方法,(第二章叙述行列式,我觉得这是一个败笔。我本人也曾用他的教材授过一次课,跳过完全没问题,一个跳过去完全不影响以后发展的章节说明其在结构上是赘余的,所以说是败笔)第三章通过n维向量空间作为脚手架来解决解的结构问题,接着引出矩阵(系数矩阵)的表示方法,引出矩阵解法。这一系列线性代数的基本概念都在解决线性方程组求解的问题中产生,并发挥作用,证明也很大程度上依赖线性方程组的基本理论,可以说结构相对清晰,中间为什么引入向量叙述也算是比较充分(但是个人在授课时依然倾向于让学生在观察求解线性方程组时系数的变化情况而引入,而不是先引入再告诉你联系,觉得这样更有逻辑些,但是毕竟有所提及,解释问题)。
我同意这样的看法:代数学是“生产定理的机器”,是研究结构的学科。有一个清晰的结构很重要,但叙述思想与概念的来源同样非常重要,因为这样的想法可以指导以后的认知,这是真正的授之以渔。
第二,定理内容深刻,进行了很大推广,在推广过程中让读者意识到每个条件的意义。第五章是特征值与特征向量,第六章是二次型(后二章里面用了大量一元多项式环的内容,虽然结论深刻了,但是要求提高了)(至此线性代数部分结束,转入高等代数部分),仅靠上半本和下半本的第七章就可以对于矩阵的特征值和特征向量有相对充分的认识了(当然,有些问题还是没能够解决,比如怎样的多项式的特征值重数不变)。之后的第十章讨论了具有度量的线性空间,并不限于实数域与复数域,还推广到了一般域(通常这个域的特征不为2)的情况,叙述正交空间与辛空间,这其实对于矢量与场论分析基础有帮助(比如,正交变换作用于一个标准正交基 #FormatImgID_2# 可得到另一个标准正交基 #FormatImgID_3# 等价于两个标准正交基做的非退化线性变换必为正交变换,这在有限维实內积空间或酉空间不可以如此论述,因为这两个基不是数域上的向量,是一般域上的),这个是很好的,也帮助读者更好认识从实数域、经过复数域再到一般数域,因为正定性这一关键(不然就没有办法定义內积)而不断放低条件的过程。
第三,例题丰富,便于自学,并至少试图进行广泛应用。表明所学的意义和用法,这一点也非常重要。我们当下很多的学生只是单纯的学习数学知识,但是对于学科的基本思想与方法全然无睹,导致的严重后果是当需要用到这些知识的时候学生们要么根本不记得多少,要么根本想不起来用。个人认为大学最重要的是培养的是人的思维方式,而不是知识(当然不是不重要,只是有了这些才有真正意义上的知识)。让读者能够学以致用,这一点上,在国内的基础教材内,丘维声老师的书确实做的非常好。
以上既是丘老师书的优点,也是在阅读的时候需要注意的:注意叙述的时候课程或者教材结构的合理性;注重每个定理的意义和条件的意义;进行应用和推广时应注意什么。
学习啦在线学习网这个其实也是是学习数学的一般思维。当然针对于代数,我也有其他的一些想法与认识,(敲黑板),以下是学习代数时应该注意的想法和方式:
学习啦在线学习网第一,注意有限与无限的区别。无限和有限的意义往往不一样,这个在有限维里成立的命题,未必可以推广到无限维。比如伴随变换在有限维酉空间里一定有,但是在无限维酉空间里就不一定有了。但是线性空间的补空间在有限维和无限维空间里都是有的。
学习啦在线学习网第二,要有“基”和维数的意识,这是(有限维的)线性代数独有的。研究一个有限维的线性空间只需要找到一个基,研究一个有限维线性空间上的线性变换除了找对应关系,还是要找一个基(线性映射找两个)。有了基才有坐标的意义,度量才有了意义。与基相关联的还有维数,这同样是描述线性空间的核心数学量(比如,两个有限维实內积空间同构当且仅当二者同维)。我所指的基,可不仅仅指线性空间中的基,还有多项式环中的不可约多项式(这往往倒是无限多的),不可约多项式和线性空间的基看似是不同的概念,却都是构筑相应结构(基域上多项式环和基域上有限维线性空间)的“砖石”。这个观点非常重要,以后讲述抽象代数,这个“砖石”有名字的,叫做“生成元”,甚至于学习群表示论,我们更关心群的不可约表示,就是因为这个。
第三,以研究态射为高等代数的核心。当然这也是后续课程抽象代数学的核心。高等代数的重难点就是线性空间与线性映射,搞不清楚这一点就没办法弄清楚结构问题,或者“作用效果”。解决问题一定要抓住要解决所需的必要条件,比如做一个矩阵分解,我得知道矩阵分解能够体现什么特征。比如,我做一个极分解,结果相当于做第一类正交变换和仿射变换这说明我作用这个矩阵可以得到这样的效果(类比于经典力学中曲线运动,我将力分解为切向力和法向力,每个分力都要承担效果的)。
第四,学习抓临界条件来解决关键问题,不要随意丢弃“脚手架”。秩的概念的本质就是向量集合的最小的生成元集中元素的个数,最小多项式更是如此(次数最低的零化多项式)。最小本质就是一种临界条件(有点类似于物理中的临界问题,或者边界条件?),临界状态往往是突破口;还有一些用过的工具用过了不代表没用,比如向量组提出其实可以看做是用来解决线性方程组问题的,但是解决了不代表就没其他用了,相应的,在度量上,其依然发挥着重要作用。
这就是个人的一点观点,不局限于高等代数(也一定不能局限,否则难以提出真正的高观点),再次表示欢迎真正的大佬前来指教,姑且作为抛砖引玉了。
高等代数学习精选心得篇4
学习啦在线学习网当你们正在《数学分析》5261课程时,同时又要学《高4102等代数》课程。1653觉得高等代数与数学分析不太一样,比较“另类”。不一样在于它研究的方法与数学分析相差太大,数学分析是中学数学的延续,其内容主要是中学的内容加极限的思想而已,同学们接受起来比较容易。高等代数则不同,它在中学基本上没有“根”。其思维方式与以前学的数学迥然不同,概念更加抽象,偏重思辨与证明。尤其是下学期,证明是主要部分,虽然学时不少,但是理解起来仍困难。 它分两个学期。我们上学期学的内容,可以归结为“一个问题”和“两个工具”。一个问题是指解线性方程组的问题,两个工具指的是矩阵和向量。 你可能会想:线性方程组我们学过,而且解它用得着讲一门课吗?大家一定要明白,首先我们的方程组不像中学所学仅含2到3个方程,它只要用消元法即可容易地求出,这里的研究的是所有方程组的规律,也就是所必须找到4个以上方程组成的方程组的解的规律,这样就比较难了,需要对方程组有个整体的认识;再者,数学的宗旨是将看似不同的事物或问题将它们联系起来,抽象出它们在数学上的本质,然后用数学的工具来解决问题。实际上,向量、矩阵、线性方程组都是基本数学工具。三者之间有着密切的联系!它们可以互为工具,在今后的学习中,你们只要紧紧抓住三者之间的联系,学习就有了主线了。 向量我们在中学学过一些,物理课也讲。
中学学的是三维向量,在几何中用有向线段表示,代数上用三个数的有序数组表示。那么我们线性代数中的向量呢,是将中学所学的向量进行推广,由三维到n维(n是任意正整数),由三个数的有序数组推广到n维有序数组,中学的向量的性质尽可能推广到n维,这样,可以解决更多的问题;矩阵呢?就是一个方形的数表,有若干行、列构成,这样看起来,概念上很好理解啊。可是研究起来可不那么简单,我们以前的运算是两个数的运算,而现在的运算涉及的可是整个数表的运算!可以想象,整个数表的运算必然比两个数的运算难。但是我们不必怕,先记住并掌握运算,运算再难,多练几遍必然就会了。关键是要理解概念与概念间的联系。 再进一步说吧:中学解方程组,有一个原则,就是一个方程解一个未知量。对于线性代数的线性方程组,方程的个数不一定等于未知量的个数。比如4个方程5个未知量,这样就不可能有唯一的解,需要将一个未知量提出来作为“自由未知量”,也就是将之当做参数(可以任意取值的常数);还有,即使是方程个数与未知量个数相同,也未必有唯一的解,因为有可能出现方程“多余”的情况。(比如第三个方程是前两个方程相加,那么第三个方程可以视为“多余”)
学习啦在线学习网总之,解方程可以先归纳出以下三大问题:第一, 有无多余方程;第二, 解决了这三大问题,方程组的解迎刃而解。我们结合矩阵、向量可以提出完全对应的问题。刚才讲了,三者联系紧密,比如一个方程将运算符号和等号除去,就是一个向量;方程组将等号和运算除去,就是一个矩阵!你们说它们是不是联系紧密?大家可不要小看这三问,我认为它们可以作为学习上学期高代的提纲挈领。 下学期主要讲“线性空间”和“线性变换”。所谓线性空间,就是将上学期所学的数域上的向量空间加以推广,很玄是吧?首先数域上的向量空间,是将向量作为整体来研究,这就是我们大学所学的第一个“代数结构”。所谓代数结构,就是由一个集合、若干种运算构成的数学的“大厦”,运算使得集合中的元素有了联系。中学有没有涉及代数结构啊?有的,比如实数域、复数域中的“域”就是含有四则运算的代数结构。
学习啦在线学习网而向量空间的集合是向量,运算就两个:加法和数乘。起初向量及其运算和上学期学的一样。可是,它的形式有局限啊,数学家就想到,将其概念的本质抽取出来,他们发现,向量空间的本质就是八条运算律,因此将它作为线性空间(也称向量空间)的公理化定义,作为原始的向量、加法、数乘未必再有原来的形式了。比如上学期学的数域上的多项式构成的线性空间。 继而,我们将数学中的“映射”用在线性空间上,于是有了“线性变换”的概念。说到底,线性变换就是线性空间保持线性运算关系不变的自身到自身的“映射”。正因为保持线性关系不变,所以线性空间的许多性质在映射后得以保持。研究线性空间与线性变换的关键就是找到线性空间的“基”,只要通过基,可以将无数个向量的运算通过基线性表示,也可以将线性变换通过基的变换线性表示!于是,线性空间的元素真正可以用上学期的“向量”表示了!线性变换可以用上学期的“矩阵”表示了!这是代数中著名的“同构”的思想!通过这样,将抽象的问题具体化了,这也就是我们前边说的“矩阵”和“向量”是两大工具的原因。同学们要记住,做线性空间与线性变换的题时这样的转化是主方向! 进一步:既然线性变换可以通过取基用矩阵表示,不同的基呢,对应不同的矩阵。我们自然想到,能否适当的取基,使得矩阵的表示尽可能简单。简单到极致,就是对角型。经研究,发现若能转成对角型的话,那么对角型上的元素是这样变换(称相似变换)的不变量,这个不变量很重要,称为变换的“特征值”。矩阵相似变换成对角型是个很实用的问题,结果,不是所有都能化对角,那么退一步,于是有了“若当标准型“的概念,只要特征多项式能够完全分解,就可以化若当标准型,有一章的内容专门研究它。这样的对角型与若当标准型有什么用呢?我们利用它是同一个变换在不同基下的矩阵表示,可以通过改变基使得研究线性变换变得简单。 最后的“欧氏空间”许多人不理解,一句话,就是仿照我们可见的三维空间,对线性空间引进度量,向量有长度、有夹角、有内积。欧氏空间有了度量后,线性空间的许多性质变得很直观且奇妙。我们要比较两者的联系与差别。此章主要讲了两种变换:对称变换与正交变换,正交变换是保持度量关系不变,对称变换在正交基下为对称阵。相似变换对角化问题到了这里变成正交变换对角化问题,在涉及对角化问题时,能用正交变换的尽量用正交变换,可以使得问题更加的容易解决。 说到这里,大家对高代有了宏观的认识了。最后总结出高代的特点,一是结构紧密,整个课程的知识点互相之间有着千丝万缕的联系,无论从哪一个角度切入,都可以牵一发而动全身,整个课程就是铁板一块。二是它解决问题的方法不再是像中学那样的重视技巧,以“点”为主,而是从代数的“结构”上,从宏观上把握解决问题的方案。这对大家是比较抽象,但是,没有宏观的理解,对此课程必然学不透彻!建议同学们边比较变学习,上学期的向量用中学的向量比较,下学期的向量用上学期的比较。在计算上理解概念,证明时注重整体结构。关于证明,这里一时无法尽言,请看我的《证明题的证法之高代篇》
高等代数学习精选心得篇5
学习啦在线学习网数学是一门让很多同学都头疼的学科,到了大学除了法学等个别社会科学专业的学生,都摆脱不了对它的学习,但因为它的相对复杂性,使得数学成了一门挂科率很高的学科,正像大学校园里经常调侃的:“大学里面都有一颗树,叫做“高数”,很多人都挂在上面。”很多同学不爱学习数学,认为自己学不好,但是数学对我们的日常生活很重要,涉及面也十分广泛,我感觉只要掌握好数学的学习方法,学起来应该还是比较容易的,下面给大家分享一下高数的学习方法。
每个人的学习习惯和理解问题的能力也有所不同,但一般的方法还是有规律的,想要学好数学必不可少的有以下几个环节。
一、培养兴趣。
大家都知道,想要把一件事做好首先要对其有兴趣,学习也是一样。很多同学看见数学复杂多变的符号和公式,头就变大了。一开始便对其产生了厌恶,不爱学习导致成绩下滑,成绩不好就对其更加厌烦,久而久之成了一个循环的怪圈。所以想学好数学,首当其冲的是培养对它的兴趣,把学数学当成一种快乐的事,同学们可以试着从简单的题目开始学习,每解出一道问题心里就会有种成就感,大大提高对数学的兴趣,然后在逐步向难度大的题目过度,使学数学成为一种习惯。
二、课前预习。
这一过程很重要,因为只有课前预习过,才会在听课时做到心中有数,即老师所讲的内容哪些是属于难以理解的,什么是重点等。预习的过程也不需要花太多时间,一般地一次课内容花三、四十分钟左右时间就可以了。在预习时不必要把所有问题弄懂,只要带着这些不懂的问题去听课就行。
三、认真听讲,记好笔记。
学习啦在线学习网对于上课要用心听讲大家都明白,但要记好课堂笔记的重要性有的同学就不以为然了,认为教材上都有,大可不必去记。其实这种认识是错误的,也是中学里带来的一种不良的学习习惯。老师对于高等数学课程的讲授,绝对不是教材上的内容的简单重复,而是翻阅了大量的同类参考书,而结合自己的教学经验与体会,所以毫不夸张地说,教师的授课教案既有以往成功的经验体会,同时也有过去的教训的借鉴。因此,同学在听课的同时必须记好课堂笔记,同时这种好的学习习惯即勤动笔对于自己学习及工作能力的培养也是大有好处的。
四、跟随老师,积极互动。
学习啦在线学习网上面说了上课要认真听讲记好笔记,与此同时上课积极发言、踊跃的与老师做好互动也非常重要。上课积极回答老师提出的问题,老师的讲课状态就会越好,从而可以多讲一些有用的知识。这样课堂气氛也活跃了,有了更好的学习氛围,老师通过学生的反应与互动,更清楚的了解学生接受的程度,以调整自己的.讲课方式和速度等,以便同学们更好的理解。学习是一个互动的过程,所以师生间的交流必不可少。
学习啦在线学习网五、课后复习,整理笔记,多做题。
学习啦在线学习网课后的自习,不少人是赶快做作业,这也是一种不好的习惯,其实下课后应该进一步认真钻研教材或教学参考书,在完全弄懂本次课内容之后,整理充实课堂笔记,有些需要理解的地方添上自己的心得与体会,把书本上的知识真正变成自己掌握的知识,然后再完成作业,这要比下课就赶作业的效果要好得多,而且完成作业的速度也要快得多。理科类的东西重要的还是多加练习,多做习题,才能更好地运用和理解公式,培养出良好的解题思路和逻辑思维。
六、善于归纳。
人的记忆力是有限的,要全面记住所有有用的东西而不遗忘是很难办到的,怎么办呢?这就需要对自己学的知识加以归纳总结,找出它们之间的内在联系和共同本质的东西,然后使之系统化条理化,从而记住最有代表性的知识点,而其余部分只要在此基础上经过推理便可以了解。每学完一章,自己要作总结。总结包括一章中的基本概念,核心内容;本章解决了什么问题,是怎样解决的;依靠哪些重要理论和结论,解决问题的思路是什么?理出条理,归纳出要点与核心内容以及自己对问题的理解和体会。最后是全课程的总结。在考试前要作总结,这个总结将全书内容加以整理概括,分析所学的内容,掌握各章之间的联系。这个总结很重要,是对全课程核心内容、重要理论与方法的综合整理。在总结的基础上,自己对全书内容要有更深一层的了解,要对一些稍有难度的题加以分析解决以检验自己对全部内容的掌握。
总之,大学的学习是人生中最后一个系统的学习过程,它不仅要传授给我们一个比较完整的专业知识,还要培养学生即将走向社会的工作能力和社会知识。就高等数学课程而言,是培养我们学生的观察判断能力、逻辑思维能力、自学能力以及动手解题的能力,而这几种能力结合起来,就可以构成独立分析问题的能力和解决问题的能力。在此,期望大家高度重视高等数学的学习,找到适合自己的学习方法,相信大家会获得更大的收获。
高等代数学习精选心得篇6
一、将三门基础2113课作为一个整体去学,摒弃孤立5261的学习,提倡综合4102的思考
恩格斯曾经说1653过:“数学是研究数和形的科学。”这位先哲对数学的这一概括,从现代数学的发展来看,已经远远不够准确了,但这一概括却点明了数学最本质的研究对象,即为“数”与“形”。比如说,从“数”的研究衍生出数论、代数、函数、方程等数学分支;从“形”的研究衍生出几何、拓扑等数学分支。20世纪以来,这些传统的数学分支相互渗透、相互交叉,形成了现代数学最前沿的研究方向,比如说,代数数论、解析数论、代数几何、微分几何、代数拓扑、微分拓扑等等。可以说,现代数学正朝着各种数学分支相互融合的方向继续蓬勃地发展下去。
数学分析、高等代数、空间解析几何这三门基础课,恰好是数学最重要的三个分支--分析、代数、几何的最重要的基础课程。根据课程的特点,每门课程的学习方法当然各不相同,但是如果不能以一种整体的眼光去学习和思考,即使每门课都得了A,也不见得就学的很好。学院的资深教授曾向我们抱怨:“有的问题只要画个图,想一想就做出来了,怎么现在的学生做题,拿来就只知道死算,连个图也不画一下。”当然,造成这种不足的原因肯定是多方面的。比如说,从教的角度来看,各门课程的教材或授课在某种程度上过于强调自身的特点,很少以整体的眼光去讲授课程或处理问题,课程之间的相互联系也涉及的较少;从学的角度来看,学生们大都处于孤立学习的状态,也就是说,孤立在某门课程中学习这门课程,缺乏对多门课程的整体把握和综合思考。
学习啦在线学习网根据我的经验,将高等代数和空间解析几何作为一个整体去学,效果肯定比单独学好,因为高等代数中最核心的概念是“线性空间”,这是一个几何对象;而且高等代数中的很多内容都是空间解析几何自然的延续和推广。另外,高等代数中还有很多分析方面的技巧,比如说“摄动法”,它是一种分析的方法,可以让我们把问题从一般矩阵化到非异矩阵的情形。因此,要学好高等代数,首先要跳出高等代数,将三门基础课作为一个整体去学,摒弃孤立的学习,提倡综合的思考。
二、正确认识代数学的特点,在抽象和具体之间找到结合点
学习啦在线学习网代数学(包括高等代数和抽象代数)给人的印象就是“抽象”,这与另外两门基础课有很大的不同。以“线性空间”的定义为例,集合V上定义了加法和数乘两种运算,并且这两种运算满足八条性质,那么V就称为线性空间。我想第一次学高等代数的同学都会认为这个定义太抽象了。其实在高等代数中,这样抽象的定义比比皆是。不过这样的抽象是有意义的,因为我们可以验证三维欧氏空间、连续函数全体、多项式全体、矩阵全体都是线性空间,也就是说,线性空间是从许多具体例子中抽象出来的概念,具有绝对的一般性。代数学的研究方法是,从许多具体的例子中抽象出某个概念;然后通过代数的方法对这一概念进行研究,得到一般的结论;最后再将这些结论返回到具体的例子中,得到各种运用。因此,“具体--抽象--具体”,这便是代数学的特点。
在认识了代数学的特点后,就可以有的放矢地学习高等代数了。我们可以通过具体的例子去理解抽象的定义和证明;我们可以将定理的结论运用到具体的例子中,从而加深对定理的理解和掌握;我们还可以通过具体例子的启发,去发现和证明一些新的结果。因此,要学好高等代数,就需要正确认识抽象和具体的辩证关系,在抽象和具体之间找到结合点。
学习啦在线学习网三、高等代数不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁
学习啦在线学习网随着时代的变迁,高等代数的教学内容和方式也在不断的发展。大概在90年代之前,国内高校的高等代数教材大多以“矩阵论”作为中心,比较强调矩阵论的相关技巧;90年代之后,国内高校的高等代数教材渐渐地改变为以“线性空间理论”作为中心,比较强调几何的意义。作为缩影,复旦的高等代数教材也经历了这样一个变化过程,1993年之前采用的屠伯埙老师的教材强调“矩阵论”;1993年之后采用的姚慕生老师的教材强调“线性空间理论”。从单纯重视“代数”到“代数”与“几何”并重,这其实是高等代数教学观念的一种全球性的改变,可能这种改变与现代数学的发展密切相关吧!
学习啦在线学习网学好高等代数的有效方法应该是:
深入理解几何意义、熟练掌握代数方法。
其次,高等代数中很多问题都是几何的问题,我们经常将几何的问题代数化,然后用代数的方法去解决它。当然,对于一些代数的问题,我们有时也将其几何化,然后用几何的方法去解决它。
最后,代数和几何之间存在一座桥梁,这就是代数和几何之间的转换语言。有了这座桥梁,我们就可以在代数和几何之间来去自由、游刃有余。因此,要学好高等代数,不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁。
学习啦在线学习网四、学好教材,用好教参,练好基本功
学习啦在线学习网复旦现行的高等代数教材是姚慕生老师、吴泉水老师编著的《高等代数学(第二版)》。这本教材从1993年开始沿用至今,已有近20年的历史。教材内容翔实、重点突出、表述清晰、习题丰富,即使与全国各高校的高等代数教材相比,也不失为出类拔萃之作。
复旦现行的高等代数教学参考书是姚慕生老师编著的《高等代数学习方法指导(第二版)》(因为封面为白色,俗称“白皮书”)。这本教参书是数院本科生必备的宝典,基本上人手一册,风行程度可见一斑。
学习啦在线学习网要学好高等代数,学好教材是最低的要求。另外,如何用好教参书,也是一个重要的环节。很多同学购买教参书,主要是因为教材里的部分作业(包括一些很难的证明题)都可以在教参书上找到答案。当然,这一点无可厚非,毕竟这就是教参书的功能嘛!但是,我还是希望一年级的新生能正确地使用教参书,遇到问题首先自己独立思考,实在想不出,再去看懂教参书上的解答,这样才能达到提高能力、锻炼思维的效果。注意:既不独立思考,又不看懂教参书上的解答,只是抄袭,这对自己来说是一种极不负责的行为,希望大家努力避免!
学习啦在线学习网最后,我愿以华罗庚先生的一句诗“勤能补拙是良训,一份辛勤一份才”与大家共勉,祝大家不断进步、学业有成!
高等代数学习精选心得篇7
作为一个过来人,我觉得这是比较正常的,题主不需要有多余焦虑。在我大一刚开始学数分和高代时,整个思维模式也受到了“新数学”的洗礼,有一个适应的过程。可能,对于大学之前没怎么接触过这些课程的大部分人,都会有与你类似的感受。
学习啦在线学习网反正我们班在大一之后,有好多弃坑转专业的,认为大学“数学”跟想象的不一样,整天就是概念证明啥的,有些枯燥无味。
我想这主要是因为我们被中学的数学束缚太久,习惯了“计算式”的数学。
想一想,我们在大学之前所接触的数学,主要是初等代数,平面和立体几何,三角函数和圆锥曲线,多项式和不等式等内容,课上所学也注重技巧的运用,和形式的计算及简单的推导。事实上,这些绝大多数是三百年前甚至两千年前的知识,关于现代数学的涉及基本没有。
即使高中时接触到了导数,极值等有关极限的概念,但没有讲更深。很多概念,还是停留在特定模式的计算和“只可意会不可言传”的理解层次上。
学习啦在线学习网而近代数学的发展,特别是分析的严谨化以来,“数学的本质已经不是计算,对数学的精通不意味着能够做复杂计算或者熟练推演符号。近代数学的重心已从计算求解转变为注重理解抽象的概念和关系。
证明不仅仅是按照规则变换对象,而是从概念出发进行逻辑推演。”(出自微信公众号:中国科学院数学与系统科学研究院—数学是什么?)所以,从高中到大学,所学的数学,内容上可以说是有了质的提升和深化。尤其数分里,很多知识点的定义,真真表现了分析的严谨和自成体系的理论。像极限的表述,就把一个脑海里变动的过程所导致的结果,合理地用定性的语言作了描述。
这很“数学”,不再是意会的说不清道不明。虽然会遇到困难,但是我相信当你耐心地钻进去,体会概念之间的联系,证明的精巧和严谨会极大地刺激你的求知欲,这是数学专业学生的必经之路。
学习啦在线学习网我认为你目前的状态,首先要能清楚地理解每一个概念和定义。如果有不清晰的点,请教一下老师,这是事半功倍的,因为以老师多年的数学功底和教学经验,可以帮助你更准确地把握一些关键知识点和定理的运用,平时要及时地多做练习,掌握一些解题的技巧。
可以买一些教材配套的参考书啥的,遇到不会的,学习一下标准的解答,也不要死磕,毕竟没有那么多时间和精力。一切学习,都是从模仿开始的,根据书上定理或者例题的证明思路,要学着去尝试证明别的题。
总之,要多读,多想,多做,这样你的学习能力的积累和理解力才能提升。学好这些基础课是极其重要的,后续的很多课程:像实变函数、泛函分析,抽象代数等都是数分高代的抽象版,如果一开始的学习里积攒很多不扎实的点,会让以后变得更加难以捉摸。
学习啦在线学习网我自己现在就是,当开始真正研究问题时,不得不耗费精力去弥补之前的不足之处。
守得云开见月明,我觉得如果你是真正爱数学,能作为一名数学专业的学生去感受数学所表现出的优美和深刻是很幸运的,你有机会去真正理解数学是什么?加油,我相信你会做的越来越好
高等代数学习精选心得篇8
当你们正在《数学分析》5261课程时,同时又要学《高4102等代数》课程。1653觉得高等代数与数学分析不太一样,比较“另类”。不一样在于它研究的方法与数学分析相差太大,数学分析是中学数学的延续,其内容主要是中学的内容加极限的思想而已,同学们接受起来比较容易。高等代数则不同,它在中学基本上没有“根”。其思维方式与以前学的数学迥然不同,概念更加抽象,偏重思辨与证明。尤其是下学期,证明是主要部分,虽然学时不少,但是理解起来仍困难。它分两个学期。我们上学期学的内容,可以归结为“一个问题”和“两个工具”。一个问题是指解线性方程组的问题,两个工具指的是矩阵和向量。你可能会想:线性方程组我们学过,而且解它用得着讲一门课吗?大家一定要明白,首先我们的方程组不像中学所学仅含2到3个方程,它只要用消元法即可容易地求出,这里的研究的是所有方程组的规律,也就是所必须找到4个以上方程组成的方程组的解的规律,这样就比较难了,需要对方程组有个整体的认识;再者,数学的宗旨是将看似不同的事物或问题将它们联系起来,抽象出它们在数学上的本质,然后用数学的工具来解决问题。实际上,向量、矩阵、线性方程组都是基本数学工具。三者之间有着密切的联系!它们可以互为工具,在今后的学习中,你们只要紧紧抓住三者之间的联系,学习就有了主线了。向量我们在中学学过一些,物理课也讲。
学习啦在线学习网中学学的是三维向量,在几何中用有向线段表示,代数上用三个数的有序数组表示。那么我们线性代数中的向量呢,是将中学所学的向量进行推广,由三维到n维(n是任意正整数),由三个数的有序数组推广到n维有序数组,中学的向量的性质尽可能推广到n维,这样,可以解决更多的问题;矩阵呢?就是一个方形的数表,有若干行、列构成,这样看起来,概念上很好理解啊。可是研究起来可不那么简单,我们以前的运算是两个数的运算,而现在的运算涉及的可是整个数表的运算!可以想象,整个数表的运算必然比两个数的运算难。但是我们不必怕,先记住并掌握运算,运算再难,多练几遍必然就会了。关键是要理解概念与概念间的联系。再进一步说吧:中学解方程组,有一个原则,就是一个方程解一个未知量。对于线性代数的线性方程组,方程的个数不一定等于未知量的个数。比如4个方程5个未知量,这样就不可能有唯一的解,需要将一个未知量提出来作为“自由未知量”,也就是将之当做参数(可以任意取值的常数);还有,即使是方程个数与未知量个数相同,也未必有唯一的解,因为有可能出现方程“多余”的情况。(比如第三个方程是前两个方程相加,那么第三个方程可以视为“多余”)
总之,解方程可以先归纳出以下三大问题:第一,有无多余方程;第二,解决了这三大问题,方程组的解迎刃而解。我们结合矩阵、向量可以提出完全对应的问题。刚才讲了,三者联系紧密,比如一个方程将运算符号和等号除去,就是一个向量;方程组将等号和运算除去,就是一个矩阵!你们说它们是不是联系紧密?大家可不要小看这三问,我认为它们可以作为学习上学期高代的提纲挈领。下学期主要讲“线性空间”和“线性变换”。所谓线性空间,就是将上学期所学的数域上的向量空间加以推广,很玄是吧?首先数域上的向量空间,是将向量作为整体来研究,这就是我们大学所学的第一个“代数结构”。所谓代数结构,就是由一个集合、若干种运算构成的数学的“大厦”,运算使得集合中的元素有了联系。中学有没有涉及代数结构啊?有的,比如实数域、复数域中的“域”就是含有四则运算的代数结构。
学习啦在线学习网而向量空间的集合是向量,运算就两个:加法和数乘。起初向量及其运算和上学期学的一样。可是,它的形式有局限啊,数学家就想到,将其概念的本质抽取出来,他们发现,向量空间的本质就是八条运算律,因此将它作为线性空间(也称向量空间)的公理化定义,作为原始的向量、加法、数乘未必再有原来的形式了。比如上学期学的数域上的多项式构成的线性空间。继而,我们将数学中的“映射”用在线性空间上,于是有了“线性变换”的概念。说到底,线性变换就是线性空间保持线性运算关系不变的自身到自身的“映射”。正因为保持线性关系不变,所以线性空间的许多性质在映射后得以保持。研究线性空间与线性变换的关键就是找到线性空间的“基”,只要通过基,可以将无数个向量的运算通过基线性表示,也可以将线性变换通过基的变换线性表示!于是,线性空间的元素真正可以用上学期的“向量”表示了!线性变换可以用上学期的“矩阵”表示了!这是代数中著名的“同构”的思想!通过这样,将抽象的问题具体化了,这也就是我们前边说的“矩阵”和“向量”是两大工具的原因。同学们要记住,做线性空间与线性变换的题时这样的转化是主方向!进一步:既然线性变换可以通过取基用矩阵表示,不同的基呢,对应不同的矩阵。我们自然想到,能否适当的取基,使得矩阵的表示尽可能简单。简单到极致,就是对角型。经研究,发现若能转成对角型的话,那么对角型上的元素是这样变换(称相似变换)的不变量,这个不变量很重要,称为变换的“特征值”。矩阵相似变换成对角型是个很实用的问题,结果,不是所有都能化对角,那么退一步,于是有了“若当标准型“的概念,只要特征多项式能够完全分解,就可以化若当标准型,有一章的内容专门研究它。这样的对角型与若当标准型有什么用呢?我们利用它是同一个变换在不同基下的矩阵表示,可以通过改变基使得研究线性变换变得简单。最后的“欧氏空间”许多人不理解,一句话,就是仿照我们可见的三维空间,对线性空间引进度量,向量有长度、有夹角、有内积。欧氏空间有了度量后,线性空间的许多性质变得很直观且奇妙。我们要比较两者的联系与差别。此章主要讲了两种变换:对称变换与正交变换,正交变换是保持度量关系不变,对称变换在正交基下为对称阵。相似变换对角化问题到了这里变成正交变换对角化问题,在涉及对角化问题时,能用正交变换的尽量用正交变换,可以使得问题更加的容易解决。说到这里,大家对高代有了宏观的认识了。最后总结出高代的特点,一是结构紧密,整个课程的知识点互相之间有着千丝万缕的联系,无论从哪一个角度切入,都可以牵一发而动全身,整个课程就是铁板一块。二是它解决问题的方法不再是像中学那样的重视技巧,以“点”为主,而是从代数的“结构”上,从宏观上把握解决问题的方案。这对大家是比较抽象,但是,没有宏观的理解,对此课程必然学不透彻!建议同学们边比较变学习,上学期的向量用中学的向量比较,下学期的向量用上学期的比较。在计算上理解概念,证明时注重整体结构。关于证明,这里一时无法尽言,请看我的《证明题的证法之高代篇》
高等代数学习精选心得篇9
学习啦在线学习网代数学从高等代数的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数,线性代数等。代数学研究的对象也已不仅是数,还有矩阵,向量,向量空间的变换等。对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于书的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。的算为效men:比如:群,环,域等。
学习啦在线学习网多项式是一类最常见,最简单的函数,他的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。
多项式代数所研究额内容,包括整除性理论,最大公因式,重因式等。这些大体和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,多对应的代数方程就没有解。
学习啦在线学习网我们把一次方程叫做线性方程,讨论线性方程的代数叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。
行列式的概念最早是由十七世界日本数学家孝和提出来的。他在写了一部叫做《解伏题之法》的著作,标题的意思是解行列式问题的方法,书里对行列式的概念和他的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。德国数学家雅可比总结并提出了行列式的系统理论。
行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。
因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。矩阵也是由数排成行和列的数表,可是行数和列数相等也可以不相等。
矩阵和行列式是两部完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量,这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,都可以得到彻底的解决。矩阵的应用是多方面的,不仅在数学领域里,而且在力学,物理,科技等方面都有十分广泛的应用。
高等代数在初等代数的基础上研究对象进一步扩充,还引入了最基本的集合,向量和向量空间等。这些量具有和数相类似的运算特点,不过研究的方法和运算的方法都更加繁琐。
集合是具有某种属性的事物的全体:向量是除了具有数值,同时还具有方向的量,向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的元素已经不只是数,而是向量了,其运算性质也有很大的不同了。
在高等代数的发展过程中,许多数学家都做出了杰出的贡献,伽罗华就是其中一位,伽罗华在临死前预测自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促的把自己生平的数学研究心得扼要写出,并附以论文手稿。他在给朋友舍瓦利叶的信中说:我在分析方法做出了一些新发现,有些是关于方程论的,有些是关于整函数的……,公开请求雅可比或高斯,不是对这些定理的证明的正确定而是对这些定理的重要性发表意见。我希望将来有人发现消除所有这些混乱对他们是有益的。
伽罗华死后,按照他的遗愿,舍瓦利把他的信发表在《百科评论》中。他的论文手稿过了14年,才由刘维尔编辑出版了他的部分文章,并向数学界推荐。随着时间的推移,伽罗华的研究成果的重要意义愈来愈为人们认识。伽罗华虽然十分年经,但他在数学史上作出的贡献,不仅解决了几个世纪以来一直没有解决 的代数解问题,更重要的是他在解决这个问题提出了群的概念,并由此发展了一系列一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革。从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步发展。
学习啦在线学习网高等代数不是一门孤立的学科,它和几何学,分析数学等有密切联系的同时,又具有独特的方面。
学习啦在线学习网首先,代数运算是有限次的,而且缺乏连续性的概念,也就是说,代数学主要是关于离散性的。尽管在现实中连续性和不连续性是辩证统一的,但是为了认识现实,有时候需要把它分成几个部分,然后分别的研究认识,在综合起来,就得到对现实的总的认识。这是我们认识事物的简单但是科学的重要手段,也是代数学的基本重要思想和方法。代数学注意到离散关系,并不能说明它的特点,时间已经多次,多方位的证明了代数学的这一特点是有效的。
其次,代数学除了对物理,化学等学科有直接的实践意义,就数学本身来说,代数学也有重要的地位。代数学中发生的许多新的概念和思想,大大丰富了数学的许多分支,成为众多学科的共同基础。
学习啦在线学习网学习高等代数,学习它的理论十分重要,但学习它的同时潜心领悟它光辉夺目的数学思想则尤为可贵,因为它指导我们的学习,对我们的生活,工作等其他社会活动方法具有广泛的导向作用。
高等代数学习精选心得篇10
虽然不是数学系学生(化学系学生),但是觉得也勉强可以回答一下。
数学分析我也坐等大佬填坑,我数学分析学的并不好;高等代数倒是可以说说一点一孔之见,有点长,欢迎友好交流。
高等代数是研究线性关系的代数学,是当代代数学的基础。那么既然提到线性关系,那么最容易想到的一定是一次齐次多项式,你可以想一下,在同一平面内的两条直线,有哪几种关系?
这个我想大家都想的明白:相交、平行或者重合。相互“平行”的几个一次齐次多项式组成的方程(条件独立)不就是线性方程组吗?相互“相交”的不就是多项式环(几个多项式依赖于乘法结合)?相互“重合”的不就是重因式吗?(重合可以看做相交的特殊情况,就是有解的情况下有无穷解,所以划到多项式环一点问题没有)
所以,国内较为常见的打开思路是要么先讲一元多项式环(或者多项式环),以张贤科先生《高等代数学》和孟道骥先生《高等代数与解析几何》的书为例;要么先讲线性方程组,以丘维声先生《高等代数》为例。姚慕生老师的书《高等代数学》开篇就是行列式,按照个人观点来看其实有问题的。从行列式的三种定义(从线性变换对应矩阵表示的角度来讲,明显不合适,观点太超前了;从映射的角度来讲,对初学者太抽象;从逆序数组合乘积再求和来讲,没有直观意义,只是沦为计算工具)来看,其十分不适合放在开篇第一章的位置。相应的,我是非常不待见考研数学线性代数经典书籍同济版本的线性代数的,这书我相信开篇行列式的打开方式令无数考研同学对于代数从此一叶障目,不见泰山。
个人比较推崇丘维声老师的思路。原因有以下几点:
第一,不仅结构相对清晰,而且思路叙述相对完备。举个例子,从线性方程组的完全求解(即完全解决线性方程组的求解方法——Gauss-Jordan算法和解的结构)开始,第一章叙述求解方法,(第二章叙述行列式,我觉得这是一个败笔。我本人也曾用他的教材授过一次课,跳过完全没问题,一个跳过去完全不影响以后发展的章节说明其在结构上是赘余的,所以说是败笔)第三章通过n维向量空间作为脚手架来解决解的结构问题,接着引出矩阵(系数矩阵)的表示方法,引出矩阵解法。这一系列线性代数的基本概念都在解决线性方程组求解的问题中产生,并发挥作用,证明也很大程度上依赖线性方程组的基本理论,可以说结构相对清晰,中间为什么引入向量叙述也算是比较充分(但是个人在授课时依然倾向于让学生在观察求解线性方程组时系数的变化情况而引入,而不是先引入再告诉你联系,觉得这样更有逻辑些,但是毕竟有所提及,解释问题)。
学习啦在线学习网我同意这样的看法:代数学是“生产定理的机器”,是研究结构的学科。有一个清晰的结构很重要,但叙述思想与概念的来源同样非常重要,因为这样的想法可以指导以后的认知,这是真正的授之以渔。
第二,定理内容深刻,进行了很大推广,在推广过程中让读者意识到每个条件的意义。第五章是特征值与特征向量,第六章是二次型(后二章里面用了大量一元多项式环的内容,虽然结论深刻了,但是要求提高了)(至此线性代数部分结束,转入高等代数部分),仅靠上半本和下半本的第七章就可以对于矩阵的特征值和特征向量有相对充分的认识了(当然,有些问题还是没能够解决,比如怎样的多项式的特征值重数不变)。之后的第十章讨论了具有度量的线性空间,并不限于实数域与复数域,还推广到了一般域(通常这个域的特征不为2)的情况,叙述正交空间与辛空间,这其实对于矢量与场论分析基础有帮助,这个是很好的,也帮助读者更好认识从实数域、经过复数域再到一般数域,因为正定性这一关键(不然就没有办法定义内积)而不断放低条件的过程。
第三,例题丰富,便于自学,并至少试图进行广泛应用。表明所学的意义和用法,这一点也非常重要。我们当下很多的学生只是单纯的学习数学知识,但是对于学科的基本思想与方法全然无睹,导致的严重后果是当需要用到这些知识的时候学生们要么根本不记得多少,要么根本想不起来用。个人认为大学最重要的是培养的是人的思维方式,而不是知识(当然不是不重要,只是有了这些才有真正意义上的知识)。让读者能够学以致用,这一点上,在国内的基础教材内,丘维声老师的书确实做的非常好。
学习啦在线学习网以上既是丘老师书的优点,也是在阅读的时候需要注意的:注意叙述的时候课程或者教材结构的合理性;注重每个定理的意义和条件的意义;进行应用和推广时应注意什么。
这个其实也是是学习数学的一般思维。当然针对于代数,我也有其他的一些想法与认识,(敲黑板),以下是学习代数时应该注意的想法和方式:
第一,注意有限与无限的区别。无限和有限的意义往往不一样,这个在有限维里成立的命题,未必可以推广到无限维。比如伴随变换在有限维酉空间里一定有,但是在无限维酉空间里就不一定有了。但是线性空间的补空间在有限维和无限维空间里都是有的。
学习啦在线学习网第二,要有“基”和维数的意识,这是(有限维的)线性代数独有的。研究一个有限维的线性空间只需要找到一个基,研究一个有限维线性空间上的线性变换除了找对应关系,还是要找一个基(线性映射找两个)。有了基才有坐标的意义,度量才有了意义。与基相关联的还有维数,这同样是描述线性空间的核心数学量(比如,两个有限维实内积空间同构当且仅当二者同维)。我所指的基,可不仅仅指线性空间中的基,还有多项式环中的不可约多项式(这往往倒是无限多的),不可约多项式和线性空间的基看似是不同的概念,却都是构筑相应结构(基域上多项式环和基域上有限维线性空间)的“砖石”。这个观点非常重要,以后讲述抽象代数,这个“砖石”有名字的,叫做“生成元”,甚至于学习群表示论,我们更关心群的不可约表示,就是因为这个。
第三,以研究态射为高等代数的核心。当然这也是后续课程抽象代数学的核心。高等代数的重难点就是线性空间与线性映射,搞不清楚这一点就没办法弄清楚结构问题,或者“作用效果”。解决问题一定要抓住要解决所需的必要条件,比如做一个矩阵分解,我得知道矩阵分解能够体现什么特征。比如,我做一个极分解,结果相当于做第一类正交变换和仿射变换这说明我作用这个矩阵可以得到这样的效果(类比于经典力学中曲线运动,我将力分解为切向力和法向力,每个分力都要承担效果的)。
学习啦在线学习网第四,学习抓临界条件来解决关键问题,不要随意丢弃“脚手架”。秩的概念的本质就是向量集合的最小的生成元集中元素的个数,最小多项式更是如此(次数最低的零化多项式)。最小本质就是一种临界条件(有点类似于物理中的临界问题,或者边界条件?),临界状态往往是突破口;还有一些用过的工具用过了不代表没用,比如向量组提出其实可以看做是用来解决线性方程组问题的,但是解决了不代表就没其他用了,相应的,在度量上,其依然发挥着重要作用。
这就是个人的一点观点,不局限于高等代数(也一定不能局限,否则难以提出真正的高观点),再次表示欢迎真正的大佬前来指教,姑且作为抛砖引玉了。
高等代数学习精选心得篇11
学习啦在线学习网在11月16—18号三天里,我非常荣幸的参加了国家精品课程《线性代数》高级研修班的学习,聆听了李尚志老师的精彩讲课,受到很大启发,收获颇丰。
学习啦在线学习网李老师讲课的第一印象就非常投入、专注,有激情。李老师的声音洪亮,每每讲到精彩之处,手臂就随之舞动,很富有感染力。李老师讲课风趣、幽默,同时又能引起听众的深刻思考。几则“数学聊斋”不仅深深地吸引了听众的注意力,更启发了对其背后的数学思想的深层次的思考;贯穿于讲课始终的`金庸小说片断,不单单活跃了课堂也道出了许多做人的体会。李老师的授课风格我非常喜欢,不过要学会他的“剑意”,我还需要多多努力。
李老师的课程设计独辟蹊径,体现了他不仅仅对于线性代数一门课程的思考还蕴含对整个数学中代数与几何关系的个人心得,这是大智慧。李老师首创了从几何角度引入行列式的概念,并给出2维到n维的行列式定义的计算公式,这是线性代数教学中的伟大创新,是代数与几何完美的融合。李老师提出的“空间为体,矩阵为用”指明了线性代数课程中的指导思想和纲领。在这三天的学习当中,还感觉到李老师在数学中的一个看法或者主张,就是尽可能用少的数学武器解决更多的问题或者用初等的思想、方法解决较高等的问题。按照李老师个人的说法这个主张是继承于华罗庚大师对于数学问题的中的一个看法。
李老师讲课精彩,引人入胜,给人以智慧。我个人觉得是李老师在用心讲课。李老师认为一个教师需要传授学生知识技能,更要告诉学生做人的道理并且身体力行。李老师说过,一心想当天下第一的人从来没有成功过,想得诺贝尔奖的人也不能获得奖,这是因为出发点错误。只有那些不是一心为了成功的人才有可能获得成功。这就告诉我们要脚踏实地,要爱科学。李老师讲课精彩还因为他个人涉猎广泛,并且能将各个学科中相通、类似的道理引入教学中来,比如他的诗、他的数学聊斋等等。在17号下午的交流中,我有幸得知李老师的一些经历。70年代初去大巴山教公社小学,他没有抱怨命运,没有放弃奋斗,而是在努力教好学生的同时,不忘自身学习。他一向认为,成功总是发生在有准备的人身上。
学习啦在线学习网我作为一名工作才2年的青年教师,李尚志老师有许多方面值得我去学习。李老师在开课之初就明确告诉我们,学习的是他的数学思想,不能生搬硬套,否则肯定要撞头。我要学习李老师的为人处世的方式;要学习他自强不息的奋斗意志,更要学习他对学生的热爱。现在的社会缺乏塌实肯干的精神和风气,我要端正我的教学态度同时学习李老师把全部精力都投入的教学当中,爱教学、爱学生。
感谢教育部、高教出版社和建工学院给我这个宝贵的学习机会,使得我有能当面学习李老师的授课。感谢班主任、班长和中心人员的热心细致周到的服务。最后祝李尚志老师身体健康。
高等代数学习精选心得篇12
学习啦在线学习网高等数2113学与高中数学相比有很大的不同,内5261容上主要是引进了一些4102全新的数学思想,特别是无限分1653割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。具体的学习方法因人而异,但有些基本的规律大家都得遵守。我具体说一下列在下面:
1、书:课本+习题集(必备),因为学好数学绝对离不开多做题(跟高中有点像,呵呵);建议习题集最好有本跟考研有关的,这样也有利于你将来可能的考研准备。
2、笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
学习啦在线学习网3、上课:建议最好预习后听听。(其实我是从来不听课的,除非习题课),听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但remember,高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
学习啦在线学习网4、学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,小弟你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。
基本网络就是上面说的笔记上的总结的知识提纲,也要重视。
基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的。
题型都明白了,比如各种极限的求法。
学习啦在线学习网好了,这些都做到了,高数应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此若时间充裕还可以学习一下数学软件,如matlab、mathematic,比如算积分都有现成的函数,通过练习可以加强对概念的掌握;此外还看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道真的很有用(不知你学的什么专业)
学习啦在线学习网最后再说说怎么提高理解能力的问题(一家之言)
1、举例具体化。如理解导数时,自己也举个例子,如f(x)=X^2+8。
2、比喻形象化。就是打比方,比如把一个二元函数的图形想成邻家女孩的头上的草帽。
3、类比初级化。比如把二元函数跟一元函数类比,泰勒公式想成二次函数,好理解。
学习啦在线学习网4、多书参考法。去你们图书管借几本不是一个作者写的高数教材,虽然讲的内容都一样,但不同的作者往往对同一个问题从不同的角度表述,对你来说,从很多不同的角度、例子理解同一个问题,往往就容易多了。Justhaveatry!
5、不懂暂跳法。对一些定理的证明、推导过程等,如果一时不明白没关系,暂时放过,记下这个疑点待以后解决就可以了。
高等代数学习精选心得篇13
在如今这个科学飞速发展,信息高速发达,知识爆炸的新时代,现代社会的发展对人才培养提出了更高的要求,也引发了数学教学任务和性质的根本变革。通过这学期对现代数学与中学教学课程的学习,我不仅对中学的课程内容有了更深刻的理解,对中学教学方法有了更进一步改进,还更新了旧的教学观念和教学思想,相信这些都是对我今后成长为一个好老师的宝贵指导思想。
在课堂上,我们老师会把班里的同学分成几个组,然后大家会先一起探讨高中书本上的一些疑难点,引导我们站在更高的知识层面上来分析高中课本。在这个过程中,我们每个人都能发表自己意见,在不同意见的交流融合中,会有很多在教学内容上的奇思妙想。就比如说老师在课堂上曾经让我们探讨过这样的一个问题:是否任意一个已知有限项数列都有其通项公式,这个通项公式又是否唯一的?刚开始同学都是尝试举反面例子来进行例证如1,0,—1,0,……,它的通项公式:当n=4k—1,Bn=—1;n=4k+1时,Bn=1;其他情况,Bn=0;但除此之外我们也可以用余弦函数或正弦函数表示,由此猜想数列通项公式是不唯一的。这就为接下来的引理论证做了铺垫。最后通过缜密的逻辑可以论证猜想成立,原来我们是可以通过有限数列构造出表达式为 一元多项式的通项公式。这个探讨的过程让我认识到了高等数学课程在知识上是中学数学的继续和提高,在思想方法上是中学数学的因袭和扩张,在观念上是中学数学的深化和发展,让我深刻的感悟到了数学的魅力和神奇。下面是一些我对本课程的一些心得体会。
首先我认为:现代数学与中学数学在知识联系上是非常紧密的。初等数学是对特例、常量的研究,而高等数学是对变量的研究,所以中学数学的知识从某一程度上可以理解为高等数学的特例。可以看到现代数学和初等数学在很多知识点方面都存在着联系:第一,中学代数给出了多项式因式分解的常用方法,高等代数首先用不可约多项式的严格定义解释了不可再分的含义,接着给出了不可约多项式的性质、因式分解定理及不可约多项式在三种数域上的判定;
学习啦在线学习网第二,中学代数讲二元一次、三元一次方程组的消元解法,高等代数讲线性方程组的行列式解法,矩阵消元解法,讲线性方程组解的判定及解与解之间的关系;此外,我认为现代数学与中学数学具有思想上的统一性。众所周知“数学是思维的体操”,小学从具体事物的数量中抽象出数字,开创了算术运算的时期;中学用字母表示数,开创了在一般形式下研究数式方程的时期;大学所学的高等代数用字母表示多项式矩阵,开始研究具体的代数系统,进而又用字母表示满足一定公理体系的抽象元素,开始研究抽象的代数系统。向量空间、欧氏空间,这些都随着概念抽象化程度得不断地提高,数学研究的对象急剧扩大。从中学数学到现代数学的学习,需要学生掌握的不只是一个个知识点,更多的是数学思想方法:转化与化归思想,分类讨论思想,数形结合思想,函数与方程思想等。高等代数与中学数学虽然在知识深度上有较大差昇,但课程所体现的数学思想方法却是一脉相承的。
总而言之,这一个学期的学习让我明白了:现代数学可以解决中学数学无法解答的问題,它有助于初等数学和高等数学的融会贯通,建立数学還緝性思維的思考方式。数学思想和数学方法是人类思维的结晶,它们支配者数学的实践活动,因此在今后的教学之路上,我不仅要做好知识的教导者,激发学生对数学的学习兴趣,更要帮助学生们建立正确的数学思想和数学方法,为他们今后在数学求知路上的进一步飞跃奠定坚实的知识基础。
高等代数学习精选心得篇14
通过听了冯家乐老师的讲座,使我更加深刻的认识到“数与代数”的内容在小学阶段的数学课程中所占的重要地位和重要的教育价值。在实施新课程改革的前景下,小学阶段“数与代数”的内容无论是从内容的取材上还是从结构的编排上都比较贴近实际生活,为更好的培养学生的数感打下了坚实的基础。
下面我就谈谈对这次学习的心得体会:
一、为什么要整体把握数学教材。
首先,数学知识是一个系统整体。要说明这个问题首先要考虑数学的本质是什么,或者说“什么是数学”?在课程标准的总体目标中提出的数学知识(包括数学事实、数学活动经验)是否可以简单的这样表述:数学知识是“数与形以及演绎”的知识。由此可以看出,作为数学学习目标之一的数学知识它应该是一个完整的整体,是“数与形以及演绎”的知识整体,整体的知识一定是结构的,是互相联系的。结构的知识一定是要系统整体学习才能掌握,只有系统整体的掌握才可能使得学生在学习知识的过程中发展智能。
学习啦在线学习网二、数学学习是整体的认知过程。
既然数学知识是一个系统的整体,那么数学教学应强调整体联系,以培养学生对数学联系的理解。当学生开始把数学看成一个紧密联系的整体时,他们应被鼓励寻找联系以帮助他们理解和解决问题。学生应问自己:“我可以换一种方式看这个问题吗?”、“这个情景与我以前遇到的类似吗?”。如果遇到的是用代数表示的,他们应考虑用几何表示它,这样可以加深理解或有助于他们找到解决策略。同时,数学学习不是单纯的知识的接受,而是以学生为主体的数学活动。现代认知科学,尤其是建构主义学习理论强调,“知识是不能被传递的,教师在课堂上传递的只是信息,知识必须通过学生主动建构才能获得”。学习就是一个不断打破原有的认知结构平衡发生同化或顺应组建新的认知结构达到新的平衡的过程。学生的数学学习也可以看成是数学知识结构转化成学生认知结构的过程。
学习啦在线学习网三、数学教材内容和数学教学应该是系统整体的。
学习啦在线学习网数学教材是根据《教学大纲》以及《数学课程标准》所规定的知识内容和要求来编写成的,它反映出党和国家对于学生学习该学科知识时所要求的深度和广度。教材的内容是教师进行教学的依据,也是学生学习的主要材料。既然数学和数学知识是一个整体,数学学习也是整体的,那么对于教材的编写和把握也应该是整体的,联系的。教材中的每一个例题就像一个神经细胞,当神经细胞串连考虑周到来时就能发挥出强大的功能。教学教材中的各个例题之间存在着相辅相成的关系,它们的互相融合成就了一种数学思想。
学习啦在线学习网同时结合教材内容蕴涵人文内涵。教师要把握例题之间本质的联系,站在一个较高的层次上用现代数学的观念去审视和处理教材,向学生传递一个完整的数学思想,帮助学生建立一个融会贯通的数学认知结构。如果把知识切割成一块又一块,各说各的,碰到这道题这样做,没碰到过的就不会做,就容易使学生陷入背数学的一种痛苦的环境中。所以说教师整体把握教材、驾驭教材对教学有着至关重要的影响。
总之,此次培训活动,使自己的教育教学观念、教学行为方法、专业化水平,教育教学理论均有了很大的提升。今后,自己充分将所学、所悟、所感的内容应用到教学实践中去。
高等代数学习精选心得篇15
三天的《线性代数》精品课程培训马上就要结束了,时间虽然短暂,但给我的触动是很深的,启示是很大的。
首先,是关于行列式的问题,李老师从全新的角度给出了全新的定义。象李老师描述的一样,我深有同感。几乎所有的线性代数教材在介绍行列式时都是通过解二元及三元一次线性方程组而引入的,曾经有一个学生课后验证四元一次线性方程组后跟我说和行列式不符。我觉得用方程组引入行列式定义有两个困惑:第一,二元及三元一次线性方程组的求解学生早在初中就很熟悉,非要用商的形式表达解有点化简单为烦琐的味道。第二,即使解出系数行列式,也很难观察归纳总结出一般规律。基于以上两点考虑,每次讲到行列式定义时,我都是在讲完全排列,逆序数后直接给出行列式的定义。由于理解上本身就有难度,所以我在讲解时给出详细的注释:行列式就是一个数,只是得来的过程有点麻烦;行列式具体说就是取自所有不同行不同列的n个元素乘积的代数和。然后按照定义,和学生们一起求出二阶和三阶行列式的计算公式,即对角线法则。而李老师从向量的角度,从几何上的面积空间立方体的体积以及n维向量的体积角度给出了全新的定义,是一种全新的思想和理念。当然,由于教材编排顺序以及学生接受程度的差异,要仿效和实施李老师的行列式的定义是很难的。但是李老师的数形结合、深入浅出、由几何到代数的思想却是培训留给我的最大的财富,使我对如何教好学生有了更深的体会。
另外,关于线性方程组有解的判别条件,许多教材都是直接给出定理和证明,然后给出有唯一解、多解、无解等不同情况的相应例题。但是在具体讲课时,如果按照书上顺序,学生就会很被动的接受。而李红裔老师在讲解时,首先引入例子,将增广矩阵化为行最简形,再和方程对应起来,得出方程的解。然后让学生观察,引导学生试归纳出一般的推广结论。这种由特殊到一般的规律和方法更利于学生理解和掌握,通过实实在在的例子让学生在观察中思考与学习,发挥了学生的主动性、积极性甚至创造性。正如李老师引用的波利亚的那段话一样:注意特殊情况的观察,能够导致一般性的结果,也可启发出一般性的证明方法。
学习啦在线学习网以上只是我的体会和收获中的一点点,这次培训不仅是我学习中的一次难忘的经历,也是宝贵的财富。我会以这次培训为契机,认真总结并学习两位老师的教学思想和理念,并将之贯穿于今后的教学中,努力钻研教材,尽可能从各个角度各个侧面理解课程内容,力求融会贯通;并站在学生的角度思考问题,学会引导和启发学生,让学生们在学会知识的同时,更学会提出问题、思考问题和解决问题的能力,从而达到更好的教学效果。
学习啦在线学习网最后谢谢两位老师给我们带来这么精彩而难忘的培训,辛苦了!!!