人工智能大二论文(2)
人工智能大二论文
人工智能大二论文篇二
学习啦在线学习网 人工智能用于异常数据挖掘研究综述
随着计算机、网络通信技术以及无线传感硬件设备的快速发展,数据挖掘技术引起了人们的关注。本文介绍了数据挖掘技术中异常数据挖掘的理论与方法,重点介绍了人工智能方法在异常数据挖掘技术中的应用,并对几种异常数据挖掘技术进行了分析和比较。希望使用者能够以这些方法为基础提出更好的方法。
【关键词】数据挖掘 异常数据挖掘 人工智能
1 引言
学习啦在线学习网 人工智能用于异常数据检测的方法很多,传统的如基于统计(statistical-based)的方法、基于距离(distance-based)的方法 [1]、基于密度(density-based)的方法[2],基于聚类的方法[3]等。但这么传统的异常数据检测方法仍然存在着一些缺陷与不足。基于统计的数据检测方法要求预先知道被检测数据的分布情况,基于距离的方法中距离函数与参数的选择存在较大的困难,基于密度的数据检测方法方法时间复杂度较高,这些问题极大地限制了异常数据挖掘算法在现实中的应用。本文重点论述人工智能方法用于异常数据挖掘的发展史,分析和比较各自的优缺点。
2 常用于异常数据挖掘的几种人工智能方法的分析
2.1 神经网络方法
学习啦在线学习网 神经网络模型主要由三层结构组成,主要包括输入层、隐含层和输出层。第一层为输入层,输入层的节点代表多个预测变量,输出层的节点代表多个目标变量,位于输入层和输出层之间的是隐含层,神经网络模型的复杂度取决于隐含层的层数和节点数。每一层的节点都允许有多个。神经网络模型主要用于解决回归和分类两类问题,其结构图如下图所示。
从上图可得,节点X1,X2,X3作为神经元的输入,代表多个预测变量,它可以是来自神经网络的信息,也可以是另一个神经元的输出;W1,W2,……,Wn是神经元的权值,表示各个神经元的连接强度。通过神经网络模型的结构图可知,该方法的实现过程:首先将每个训练样本的各属性取值同时赋给第1层即输入层;各属性值再结合各自的权重赋给第2层(隐含层的第1层),第1层隐含层再结合各自的权重输出又作为下一隐含层的输入,最后一层的隐含层节点带权输出赋给输出层单元,输出层最终给出各个训练样本的预测输出。
学习啦在线学习网 2.2 蚁群聚类算法
在数据挖掘中,聚类是一个活跃的研究领域,涉及的范围较广。许多计算机学者们通过模仿生物行为提出一系列解决问题的新颖方法。蚂蚁搜索模式样本所归属的聚类中心的概率计算公式如式(1)。
(1)
其中,α,β为参数,初始聚类中心为随机选取的k个模式样本点。τ(i,j)为样本Xj到聚类中心mj之问的信息素i=1,2, …,n,j=1,2, …,k ;η(i,j)为启发函数,其表达式如式(2)所示。
(2)
学习啦在线学习网 其中,dj为模式样本Xj到聚类中心mj的欧氏距离为(i=1,2, …,n,j=1,2, …,k)。
蚂蚁搜索整个模式样本空间,形成一个聚类结果后,聚类中心mj各分量的值为该类Cj中模式样本各属性的均值,计算公式如(3)。
(3)
学习啦在线学习网 2.3 基于知识粒度的异常数据挖掘算法
学习啦在线学习网 粒计算是人工智能领域新发展起来的一个研究方向,该方法针对不确定性信息进行处理。它主要包括三种模型,分别是粗糙集模型、模糊集模型与商空间模型。该方法的基本思想是利用不同粒度上的信息进行问题求解。该理论在多个领域得到了广泛的应用,如数据挖掘、决策支持与分析和机器学习等。知识粒度为异常数据挖掘处理不确定性数据提供一种新的解决方法。基于知识粒度的异常数据挖掘算法,该算法不需要预先知道数据的分布情况,并且采用知识粒度度量各个对象间的距离与异常度时,能有效挖掘出异常数据。
3 各方法的比较
通过以上各种方法的分析,各种方法具有各自的优点以及不足之处。基于聚类的数据挖掘方法侧重与于聚类的问题,该问题极大地限制了该算法在实际生活中的应用。神经网络方法用于数据挖掘,是人工智能中较早应用于数据挖掘领域的方法之一,能够较好的进行异常数据的挖掘,但是该方法的层数的确定比较困难,同时该方法的时间复杂度比较高;蚁群聚类算法是在聚类算法的基础上改进推广而得,能够达到异常数据检测的目的,但该算法的收敛速度慢,而且算法存在随机移动而延长聚类时间。
4 结束语
异常数据挖掘研究是一个有价值的研究问题,近年来引起越来越多的学者关注和研究,从而使得异常数据挖掘算法取得了新的进展,在生态系统分析、公共卫生、气象预报、金融领域、客户分类、网络入侵检测、药物研究等方面得到了广泛的应用。希望本论文中的方法可以给读者提供更多异常数据挖掘方面的思路,并且能够很好的将人工智能中的方法运用异常数据挖掘中,克服各种方法不足,让人们能够更好的应用。
学习啦在线学习网 看了“人工智能大二论文”的人还看了: