学习啦 > 学习方法 > 通用学习方法 > 学习方法指导 > 高中数学知识点汇总,提高高中数学成绩的方法有哪些?

高中数学知识点汇总,提高高中数学成绩的方法有哪些?

时间: 惠敏1219 分享

学习啦在线学习网高中数学知识点汇总,提高高中数学成绩的方法有哪些?

  繁重的学习当中,大家都想总结知识点进行有条不絮的学习。小编今天给大家整理了一些高中数学知识点的汇总,值得大家阅读。

  高中数学知识点汇总 值得阅读

  (一)三角函数

  对于三角函数的考法共有两种。分别是解三角形和三角函数本身。大概百分之十到二十的概率考解三角形,百分之八十到九十概率考对于三角函数本身的熟练运用。

  (二)概率统计

  考点覆盖概率统计必修和选修的各个章节的内容,考查了抽样法、统计图表、数据的数字特征、用样本估计整体、回归分析、独立性检验、古典概型、几何概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法。

  (三)立体几何

学习啦在线学习网   这类题解题方法有两种,传统法和向量法,各有利弊。向量法可以说说任何情况下都可以使用,没有任何技术含量,肯定能解出正确答案,但是计算量大而且容易出错。

  (四)数列

  数列主要是求解通项公式和前n项和。首先是通项公式,要看题目中给出的条件形式,不同的形式对应不同的解题方法,其中主要包括公式法(定义法)、累加法、累乘法、待定系数法、数学归纳法 倒数变化法等,熟练应用这些方法并积累例题达到熟练的程度。

  (五)圆锥曲线

  在这里要明确它的求解方法:直接法(性质法)、定义法、直译法、相关点法、参数法、交轨法、点差法。

  (六)导数和函数

  关于单调性、最值、极值的考察

  证明不等式

  函数中含有字母,分类讨论字母的取值范围

  (七)参数方程

学习啦在线学习网   高中数学答题技巧

  高中数学答题没有什么明确的技巧,所谓熟能生巧。题做的多了自然而然就找到了答题的技巧,会的题就多练几道,总结相同类型的题的解题思路,见的题多了,自然就都知道该怎么解了。

  学会分析问题的条件与结论之间的联系,掌握一题多解和多题一解的解题思路。

  错误的总结与记录 解题后,要思考题中易混易错的地方,总结预防错误的经验和犯错误的教训,有必要的要做好错题记录。 把一道题目做好,充分利用好题目的训练功能,久而久之,你就会体会到“题不在多而在精”的道理。

学习啦在线学习网   高中数学公式大全 高考文科必背数学公式整理

  高中重点数学公式大全

学习啦在线学习网   乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

  判别式

学习啦在线学习网   b2-4ac=0 注:方程有两个相等的实根

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根

  三角函数公式

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

学习啦在线学习网   cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

学习啦在线学习网   tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

学习啦在线学习网   sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

学习啦在线学习网   sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

学习啦在线学习网   tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

学习啦在线学习网   ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

学习啦在线学习网   某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

学习啦在线学习网   正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

学习啦在线学习网   余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

  圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

学习啦在线学习网   正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

  圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

学习啦在线学习网   圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

  弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

学习啦在线学习网   锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

学习啦在线学习网   斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

  柱体体积公式 V=s*h 圆柱体 V=pi*r2h

学习啦在线学习网   高中文科数学必背公式总结

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα (k∈Z)

学习啦在线学习网   cos(2kπ+α)=cosα (k∈Z)

  tan(2kπ+α)=tanα (k∈Z)

学习啦在线学习网   cot(2kπ+α)=cotα (k∈Z)

  公式二:

学习啦在线学习网   设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与 -α的三角函数值之间的关系:

学习啦在线学习网   sin(-α)=-sinα

学习啦在线学习网   cos(-α)=cosα

  tan(-α)=-tanα

学习啦在线学习网   cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

学习啦在线学习网   tan(π-α)=-tanα

学习啦在线学习网   cot(π-α)=-cotα

  公式五:

学习啦在线学习网   利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

学习啦在线学习网   tan(2π-α)=-tanα

学习啦在线学习网   cot(2π-α)=-cotα

  公式六:

学习啦在线学习网   π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

学习啦在线学习网   tan(π/2+α)=-cotα

学习啦在线学习网   cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

学习啦在线学习网   cos(π/2-α)=sinα

  tan(π/2-α)=cotα

学习啦在线学习网   cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

学习啦在线学习网   cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

学习啦在线学习网   cot(3π/2+α)=-tanα

学习啦在线学习网   sin(3π/2-α)=-cosα

学习啦在线学习网   cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

学习啦在线学习网   cot(3π/2-α)=tanα

学习啦在线学习网   (以上k∈Z)

  公式七:两角和差公式

  两角和与差的三角函数公式

  sin(α+β)=sinαcosβ+cosαsinβ

学习啦在线学习网   sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

学习啦在线学习网   tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

学习啦在线学习网   公式八:二倍角公式

  二倍角的正弦、余弦和正切公式(升幂缩角公式)

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/[1-tan^2(α)]

学习啦在线学习网   公式九:半角公式

  半角的正弦、余弦和正切公式(降幂扩角公式)

学习啦在线学习网   sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

学习啦在线学习网   公式十:万能公式

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

学习啦在线学习网   tanα=2tan(α/2)/[1-tan^2(α/2)]

  公式十一:三倍角公式

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

学习啦在线学习网   cos3α=4cos^3(α)-3cosα

学习啦在线学习网   tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  提高高中数学成绩的方法有哪些

  1.主动预习

学习啦在线学习网   预习是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

学习啦在线学习网   因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

  抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  2.主动思考

学习啦在线学习网   很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

  主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

  靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!

  3.善于总结规律

  解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:

  ① 本题最重要的特点是什么?

学习啦在线学习网   ② 解本题用了哪些基本知识与基本图形?

  ③ 本题你是怎样观察、联想、变换来实现转化的?

  ④ 解本题用了哪些数学思想、方法?

学习啦在线学习网   ⑤ 解本题最关键的一步在那里?

  ⑥ 你做过与本题类似的题目吗?在解法、思路上有什么异同?

学习啦在线学习网   ⑦ 本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?

  把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

  4.拓宽解题思路

学习啦在线学习网   数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。

  5.必须要有错题本

  说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。

学习啦在线学习网   错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。

5682