上海高二数学考试中常用三种解题技巧
学习啦在线学习网上海高二数学考试中常用三种解题技巧
学习啦在线学习网 高中数学理论是化归思想的体现,我们可以通过观察数学问题的题根,理解问题,抓住数学问题的题眼,有效地转化问题,下面是学习啦小编给大家带来的上海高二数学考试中常用三种解题技巧,希望对你有帮助。
高二数学考试解题技巧一、“构造法+函数法”的结合
学习啦在线学习网 而且本题还可以从另一个思路进行解答,就是运用复数模的概念,将相联系的数据和看成一个模函数,仍然可以得到所求的结果。
高二数学考试解题技巧二、转换法
学习啦在线学习网 这种方法是体现学生的想象力及创新能力的方法,也是数学解题技巧中最富有挑战性的方法,能将复杂的题型辅以转换的功能,成为简单的、易被理解的题型。比如,一个正方体平面为ABCB和A1B1C1D1,在正方体的棱长D1C1和C1B1分别设置两点E和F为中点,AC与BD相交于P点,A1C1于EF相交于Q点,求证:(1)点D、B、F、B在同一平面上;(2)如果线段A1C通过平面DBFE,交点到R点,那么P、R、Q三点共线?
解题(1):由题可知:线段EF是△D1B1C1的中位线,所以,EF与B1D1平行,在正方体AC1中,线段B1D1与BD平行,相应得出:线段EF与线段BD相平行,由此得出线段EF和BD在一个平面,所以可以求得点D、B、F、E在同一个平面。
解题(2):假设平面A1ACC1为x,平面BDEF为y,由于Q点在平面AC,所以Q点也属于平面x,为x和y的交点,同属两个平面的点。同理可得,点P也属x、y的公共点,而R点是平面A1C与平面y的交点,所以,可以得到P、Q、R三点共线。
高二数学考试解题技巧三、反证法
任何事物的结果有时顺着程序去思考,往往不得要领,倘若从结果向事物开始的方向或用假设的反方向去推理,反倒会“一片洞天”。数学解题技巧也是如此。首先,假设命题结论相反的答案,顺理演绎地解答,得出假设的矛盾结果,从另一侧面论证了正确答案。例如,苏教版教材必修1《函数》章节,已知函数f(x)是一项正负无限大范围内的增函数,a、b都为实数,求证:(1)假设:(a+b)≥0,则函数式表示为:f(a)+f(b)≥f(-a)+f(-b)成立;(2)求证(1)问中逆命题是否正确。
解题分析:(1)因为(a+b)≥0,移项后,可得:a≥-b,由于函数为单调递增函数,则:f(a)≥f(-b),又(a+b)≥0,移项后,可得:b≥-a,f(b)≥f(-a);两个方程相加,得:f(a)+f(b)≥f(-a)+f(-b),由此证明完毕。
解题(2)分析思路就是由(1)中得出的结论f(a)+f(b)≥f(-a)+f(-b),反证得出(a+b)≥0是否成立。于是,我们先假设(a+b)<0成立,那么,移项后,分别出现两个不等式函数,即:f(a) f(b) 四、逐项消除法(也可称:归纳法)
学习啦在线学习网 这种方法就是将数列前项与后项进行规律查找,逐项消除或归纳合并的方法去求得答案。在苏教版必修5《数列》章节中,有一道习题为:求:1/2+2/3!+3/4!+4/5!+5/6!+…+(n-1)/n!的和;
学习啦在线学习网 解题分析:这道习题就是按照一定的规律进行递增的集合,那么,就可以运用求和的公式,转化为:Sn=1/1-1/2+1/2+1/3+…+1/(n-2)!-1/(n-1)!+1/(n-1)!-1/n=1-(1/n)的形式进行解答,使解题的速度效率提高。