学习啦 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 2017年高考数学高频考点

2017年高考数学高频考点

时间: 淑航658 分享

2017年高考数学高频考点

  在2017年的高考数学备考阶段,你知道哪些是高频的考点吗?下面是学习啦小编收集整理的2017年高考数学高频考点以供大家学习。

  2017年高考数学高频考点:直线方程

学习啦在线学习网   1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

  注:①当或时,直线垂直于轴,它的斜率不存在.

  ②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

学习啦在线学习网   2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

  特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

学习啦在线学习网   注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

学习啦在线学习网   附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.

  3. ⑴两条直线平行:

  ∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

学习啦在线学习网   (一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)

学习啦在线学习网   推论:如果两条直线的倾斜角为则∥.

学习啦在线学习网   ⑵两条直线垂直:

学习啦在线学习网   两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)

学习啦在线学习网   4. 直线的交角:

  ⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

学习啦在线学习网   ⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

学习啦在线学习网   5. 过两直线的交点的直线系方程为参数,不包括在内)

  2017年高考数学高频考点:轨迹方程

  一、求动点的轨迹方程的基本步骤

学习啦在线学习网   ⒈建立适当的坐标系,设出动点M的坐标;

学习啦在线学习网   ⒉写出点M的集合;

  ⒊列出方程=0;

  ⒋化简方程为最简形式;

  ⒌检验。

学习啦在线学习网   二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

学习啦在线学习网   ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  ⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

学习啦在线学习网   ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  2017年高考数学高频考点:导数

学习啦在线学习网   一、函数的单调性

  在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.

  f′(x)≥0⇔f(x)在(a,b)上为增函数.

学习啦在线学习网   f′(x)≤0⇔f(x)在(a,b)上为减函数.

  二、函数的极值

  1、函数的极小值:

  函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.

  2、函数的极大值:

学习啦在线学习网   函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.

  极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

  三、函数的最值

  1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.

  2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.

  四、求可导函数单调区间的一般步骤和方法

  1、确定函数f(x)的定义域;

  2、求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;

学习啦在线学习网   3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;

学习啦在线学习网   4、确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.

  >>>下一页更多精彩“2017年高考数学高频考点”

403962