学习啦 > 学习方法 > 高中学习方法 > 高一学习方法 > 高一数学 > 高一数学曲线的参数方程知识点分析

高一数学曲线的参数方程知识点分析

时间: 夏萍1132 分享

高一数学曲线的参数方程知识点分析

  高一的数学学习的知识点比较的多,很多都是学生需要掌握的,下面学习啦的小编将为大家带来高一的数学关于曲线的参数方程的知识点的介绍,希望能够帮助到大家。

  高一数学曲线的参数方程知识点

学习啦在线学习网   曲线的参数方程的定义:

学习啦在线学习网   一般地,在平面直角坐标系中,如果曲线C上任意一点的坐标x、y都是某个变数t的函数

  ①,并且对于t的每一个允许值,由方程组①所确定的点P(x,y)都在这条曲线C上,那么方程组①就叫做这条曲线的参数方程。变数t叫做参变量或参变数,简称参数。

  曲线的参数方程的理解与认识:

  (1)参数方程的形式:横、纵坐标x、y都是变量t的函数,给出一个t能唯一的求出对应的x、y的值,因而得出唯一的对应点;但横、纵坐标x、y之间的关系并不一定是函数关系。

学习啦在线学习网   (2)参数的取值范围:在表述曲线的参数方程时,必须指明参数的取值范围;取值范围的不同,所表示的曲线也可能会有所不同。

学习啦在线学习网   (3)参数方程与普通方程的统一性:普通方程是相对参数方程而言的,普通方程反映了坐标变量x与y之间的直接联系,而参数方程是通过变数反映坐标变量x与y之间的间接联系;普通方程和参数方程是同一曲线的两种不同表达形式;参数方程可以与普通方程进行互化。

学习啦在线学习网   一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x, y都是某个变数t的函数:x=f(t),y=g(t), 并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x, y的变数t叫做参变数,简称参数。

  圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数

  椭圆的参数方程 x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数

  双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数

  抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

学习啦在线学习网   直线的参数方程 x=x'+tcosa y=y'+tsina , x', y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.

  数学充分条件与必要条件知识点

  一、充分条件和必要条件

  当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

  二、充分条件、必要条件的常用判断法

  1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

  2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

  3.集合法

  在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

  若A⊆B,则p是q的充分条件。

  若A⊇B,则p是q的必要条件。

  若A=B,则p是q的充要条件。

  若A⊈B,且B⊉A,则p是q的既不充分也不必要条件。

  三、知识扩展

学习啦在线学习网   1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

  (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

  (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

学习啦在线学习网   (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

  2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

点击下页查看更多数学充分条件与必要条件内容练习及解析

3784510