学习啦>学习方法>各学科学习方法>数学学习方法>

高中数学说课稿

时间: 芷琼1026 分享

  随着说课的发展及其应用范围的扩大,说课逐渐成为现阶段极其重要的一种教研活动。下面是学习啦小编为你整理的高中数学说课稿,一起来看看吧。

  高中数学说课稿:三角函数

  一、教材分析

  (一)内容说明

学习啦在线学习网   函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。

学习啦在线学习网   三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。

  本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。

学习啦在线学习网   著名数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。

  本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。

学习啦在线学习网   因此,本节课在教材中的知识作用和思想地位是相当重要的。

  (二)课时安排

  4.8节教材安排为4课时,我计划用5课时

  (三)目标和重、难点

  1.教学目标

学习啦在线学习网   教学目标的确定,考虑了以下几点:

  (1)高一学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;

  (2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。

  (3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。

学习啦在线学习网   由此,我确定了以下三个层面的教学目标:

  (1)知识层面:结合正弦曲线、余弦曲线,师生共同探索发现正(余)弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究方法;

学习啦在线学习网   (2)能力层面:通过在教师引导下探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础;

  (3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。

  2. 重、难点

学习啦在线学习网   由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。

  难点是:函数周期定义、正弦函数的单调区间和对称性的理解。

  为什么这样确定呢?

学习啦在线学习网   因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。

学习啦在线学习网   如何克服难点呢?

学习啦在线学习网   其一,抓住周期函数定义中的关键字眼,举反例说明;

  其二,利用函数的周期性规律,抓住“横向距离”和“k∈Z"的含义,充分结合图象来理解单调性和对称性

  二、教法分析

学习啦在线学习网   (一)教法说明 教法的确定基于如下考虑:

  (1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。

  (2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。

学习啦在线学习网   (3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。

学习啦在线学习网   所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。

  (二) 教学手段说明:

  为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:

  (1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。

  (2)为便于课堂操作和知识条理化,事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写;

学习啦在线学习网   (3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。

学习啦在线学习网   三、学法和能力培养

  我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。

学习啦在线学习网   本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。

  教师要做到:

学习啦在线学习网   授之以渔,与之合作而渔,使学生享受渔之乐趣。 因此

学习啦在线学习网   1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。

学习啦在线学习网   2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。

  四、教学程序

学习啦在线学习网   指导思想是:两条线索、三大特点、四个环节

  (一)导入

  引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。

  采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。

  (二)新知探索 主要环节,分为两个部分

  教学过程如下:

  第一部分————师生共同研究得出正弦函数的性质

  1.定义域、值域 2.周期性

学习啦在线学习网   3.单调性 (重难点内容)

  为了突出重点、克服难点,采用以下手段和方法:

学习啦在线学习网   (1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;

  (2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。

  (3)单调区间的探索过程是:

  先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。

学习啦在线学习网   ** 教师结合图象帮助学生理解并强调 “距离”(“长度”)是周期的多少倍

  为什么要这样强调呢?

  因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。

  4.对称性

  设计意图:

  (1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。

学习啦在线学习网   (2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。

  5.最值点和零值点

  有了对称性的理解,容易得出此性质。

学习啦在线学习网   第二部分————学习任务转移给学生

  设计意图:

  (1)通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作自我评价;

学习啦在线学习网   (2)通过学生自主探索,给予学生解决问题的自主权,促进生生交流,利于教师作反馈评价;

  (3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。

  (三)巩固练习

学习啦在线学习网   补充和选作题体现了课堂要求的差异性。

  (四)结课

学习啦在线学习网   五、板书说明 既要体现原则性又要考虑灵活性

  1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)

  2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)

学习啦在线学习网   六、效果及评价说明

  (一)知识诊断

  (二)评价说明

学习啦在线学习网   1.针对本班学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动。

  2. 根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。

  3. 本节课充分体现了面向全体学生、以问题解决为中心、注重知识的建构过程与方法、重视学生思想与情感的设计理念,积极地探索和实践我校的科研课题——努力推进课堂教学结构改革。

  通过这样的探索过程,相信学生能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情,这正是我们教育工作者追求的结果。

  高中数学说课稿:正弦定理

学习啦在线学习网   一、教材地位与作用

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

  二、学情分析

学习啦在线学习网   作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标

  教学目标分析:

  知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

学习啦在线学习网   能力目标:探索正弦定理的证明过程,用归纳法得出结论。

  情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

  三、教法学法分析

  教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

  学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

  四、教学过程

  (一)创设情境,布疑激趣

学习啦在线学习网   “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

学习啦在线学习网   3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

学习啦在线学习网   4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。

  (四)归纳总结,简单应用

学习啦在线学习网   1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

学习啦在线学习网   2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

学习啦在线学习网   3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

学习啦在线学习网   (五)讲解例题,巩固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

学习啦在线学习网   例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

学习啦在线学习网   例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1.在△ABC中,已知下列条件,解三角形。

学习啦在线学习网   (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

学习啦在线学习网   2.在△ABC中,已知下列条件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

学习啦在线学习网   学生板演,老师巡视,及时发现问题,并解答。

学习啦在线学习网   (七)小结反思,提高认识

  通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1.用向量证明了正弦定理,体现了数形结合的数学思想。

学习啦在线学习网   2.它表述了三角形的边与对角的正弦值的关系。

学习啦在线学习网   3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

学习啦在线学习网   (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

高中数学说课稿

随着说课的发展及其应用范围的扩大,说课逐渐成为现阶段极其重要的一种教研活动。下面是学习啦小编为你整理的高中数学说课稿,一起来看看吧。 高中数学说课稿:三角函数 一、教材分析 (一)内容说明 函数是中学数学的重要内容,中学数学对
推荐度:
点击下载文档文档为doc格式

精选文章

  • 数学数学归纳法
    数学数学归纳法

    数学归纳是一种有特殊事例导出一般原理的思维方法。下面是学习啦小编为你整理的高中数学数学归纳法,一起来看看吧。 高中数学数学归纳法定义 最简

  • 高中数学数列论文范文
    高中数学数列论文范文

    学习啦在线学习网数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是学习

  • 数学期望应用毕业论文
    数学期望应用毕业论文

    学习啦在线学习网数学期望是随机变量最重要的特征数之一,它是消除随机性的主要手段.本文通过对数学期望的概念、性质以及应用性的举例,下面是学习啦小编为你整理的

  • 数学论文导数及应用范文
    数学论文导数及应用范文

    导数的几何意义伴随着导数进入高中数学教材后,给函数图象及性质的研究开辟了一条新的途径.下面是学习啦小编为你整理的数学论文导数及应用,一起来

3007972