学习啦>学习方法>各学科学习方法>数学学习方法>

初2数学下册知识点

时间: 芷琼1026 分享

  用数学的视角去发现知识,在数学的本质问题中感悟数量关系。初二数学下册有哪些知识点呢?下面是学习啦小编为你整理的初2数学下册知识点,一起来看看吧。

  初2数学下册知识点:分式

  (一)运用公式法:

学习啦在线学习网   我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

  a2-b2=(a+b)(a-b)

学习啦在线学习网   a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

学习啦在线学习网   如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

学习啦在线学习网   (二)平方差公式

  1.平方差公式

  (1)式子:a2-b2=(a+b)(a-b)

  (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

  (三)因式分解

学习啦在线学习网   1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

  2.因式分解,必须进行到每一个多项式因式不能再分解为止。

学习啦在线学习网   (四)完全平方公式

学习啦在线学习网   (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

  a2+2ab+b2=(a+b)2

学习啦在线学习网   a2-2ab+b2=(a-b)2

学习啦在线学习网   这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

  把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

  上面两个公式叫完全平方公式。

学习啦在线学习网   (2)完全平方式的形式和特点

  ①项数:三项

学习啦在线学习网   ②有两项是两个数的的平方和,这两项的符号相同。

学习啦在线学习网   ③有一项是这两个数的积的两倍。

学习啦在线学习网   (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

学习啦在线学习网   (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

  (五)分组分解法

学习啦在线学习网   我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

学习啦在线学习网   如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

学习啦在线学习网   原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

  原式=(am+an)+(bm+bn)

学习啦在线学习网   =a(m+n)+b(m+n)

  =(m+n)?(a+b).

  这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

学习啦在线学习网   (六)提公因式法

学习啦在线学习网   1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.

  2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

学习啦在线学习网   ⑴.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.

  ⑵.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:a.列出常数项分解成两个因数的积各种可能情况;b.尝试其中的哪两个因数的和恰好等于一次项系数.

学习啦在线学习网   3.将原多项式分解成(x+q)(x+p)的形式.

学习啦在线学习网   (七)分式的乘除法

学习啦在线学习网   1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

  2.分式进行约分的目的是要把这个分式化为最简分式.

  3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

  4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

学习啦在线学习网   5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

学习啦在线学习网   6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

学习啦在线学习网   (八)分数的加减法

学习啦在线学习网   1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

学习啦在线学习网   3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

  4.通分的依据:分式的基本性质.

  5.通分的关键:确定几个分式的公分母.

学习啦在线学习网   通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.

学习啦在线学习网   6.类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

学习啦在线学习网   7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

  8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

  9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

  10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

  11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

  12.作为最后结果,如果是分式则应该是最简分式.

  (九)含有字母系数的一元一次方程

  1.含有字母系数的一元一次方程

学习啦在线学习网   引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)

学习啦在线学习网   在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

  含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

  初2数学下册知识点:勾股定理

  一、勾股定理:

  1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

学习啦在线学习网   2.勾股定理的证明:

  勾股定理的证明方法很多,常见的是拼图的方法

  用拼图的方法验证勾股定理的思路是:

  (1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;

  (2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

学习啦在线学习网   3.勾股定理的适用范围:

学习啦在线学习网   勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

  二、勾股定理的逆定理

  1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

学习啦在线学习网   说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;

学习啦在线学习网   (2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.

  2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:

  (1)确定最大边;

学习啦在线学习网   (2)算出最大边的平方与另两边的平方和;

  (3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

  三、勾股数

学习啦在线学习网   能够构成直角三角形的三边长的三个正整数称为勾股数.

学习啦在线学习网   四、一个重要结论:

  由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

  五、勾股定理及其逆定理的应用

  解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。

  初2数学下册知识点:函数及其相关概念

  1、变量与常量

学习啦在线学习网   在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

学习啦在线学习网   用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

学习啦在线学习网   3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

学习啦在线学习网   把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

学习啦在线学习网   用图像表示函数关系的方法叫做图像法。

学习啦在线学习网   4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

学习啦在线学习网   (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。


猜你感兴趣的:

1.初2数学知识点总结

2.初二数学下册知识点

3.初二下册数学知识点总结

4.初二数学下册知识点总结

5.八年级下册数学知识点归纳

3108675