小学数学鸡兔同笼题如何解决
鸡兔同笼问题,是小学阶段一个非常重要的数学模型。解决这类问题可以极大的拓宽孩子的解题思路,帮其拓宽解题思路,加深对所学知识的理解。
鸡兔同笼例题
学习啦在线学习网 (1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
学习啦在线学习网 总头数-兔数=鸡数。
学习啦在线学习网 (每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
学习啦在线学习网 【例】“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
【解】
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二 (4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
学习啦在线学习网 (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
学习啦在线学习网 总头数-兔数=鸡数
(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。
学习啦在线学习网 (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式
学习啦在线学习网 (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
学习啦在线学习网 (每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
学习啦在线学习网 总头数-鸡数=兔数。
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
【例】“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
【解析】
学习啦在线学习网 解一 (4×1000-3525)÷(4+15)
=475÷19=25(个)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
学习啦在线学习网 =1000-975=25(个)
学习啦在线学习网 (“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
学习啦在线学习网 (5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
1.〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
2.〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
【例】 有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?
【解析】
〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
学习啦在线学习网 〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔