学习啦>学习方法>高中学习方法>高二学习方法>高二数学>

高中高二数学知识点

时间: 赞锐0 分享

在掌握的基础上,做专项训练,按层次补缺和提高。我们可以自己建立一本错题集,将在练习中做错的题目和尚未弄懂的题目及时记录下来,逐一解决,形成巩固。以下是小编给大家整理的高中高二数学知识点,希望能助你一臂之力!

高中高二数学知识点1

1.求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

学习啦在线学习网(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

学习啦在线学习网(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2.求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

学习啦在线学习网(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

(4)检查f(x)的符号并由表格判断极值。

3.求函数的值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。

求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。

4.解决不等式的有关问题:

学习啦在线学习网(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

学习啦在线学习网(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5.导数在实际生活中的应用:

实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。

高中高二数学知识点2

1.定义法:

判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可。

2.转换法:

学习啦在线学习网当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.集合法

在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

学习啦在线学习网若A?B,则p是q的充分条件。

学习啦在线学习网若A?B,则p是q的必要条件。

学习啦在线学习网若A=B,则p是q的充要条件。

学习啦在线学习网若A?B,且B?A,则p是q的既不充分也不必要条件。

高中高二数学知识点3

极值的定义:

学习啦在线学习网(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)

(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

极值的性质:

(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;

学习啦在线学习网(2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;

学习啦在线学习网(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;

(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。

学习啦在线学习网求函数f(x)的极值的步骤:

(1)确定函数的定义区间,求导数f′(x);

(2)求方程f′(x)=0的根;

(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

高中高二数学知识点相关文章

高二数学知识点总结

高二数学整体知识总结

高二数学知识点2020总结

职业高中高二数学知识点

高二数学知识点及公式2020

高二数学知识点归纳

高二数学知识点复习总结

高二数学知识点总结(人教版)

高二数学知识点小结

高中高二数学知识点

在掌握的基础上,做专项训练,按层次补缺和提高。我们可以自己建立一本错题集,将在练习中做错的题目和尚未弄懂的题目及时记录下来,逐一解决,形成巩固。以下是小编给大家整理的高中高二数学知识点,希望能助你一臂
推荐度:
点击下载文档文档为doc格式
1069683