高三数学学科知识点分析
要成为德、智、体兼优的劳动者,锻炼身体极为重要。身体健康是求学和将来工作之本。运动能治百病,能使人身体健康,头脑敏捷,对学习有促进作用。以下是小编给大家整理的高三数学学习啦在线学习网学科知识点分析,希望能帮助到你!
高三数学学科知识点分析1
1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
学习啦在线学习网2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C>0(或≥0),另一部分对应二元一次不等式Ax+By+C<0(或≤0)。
4.已知平面区域,用不等式(组)表示它,其方法学习啦在线学习网是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。
学习啦在线学习网5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。“线定界,点定域”。
6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C>0所表示的平面区域时,应把边界画成虚线。
学习啦在线学习网8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。
学习啦在线学习网9.从实际问题中抽象出二元一次不等式(组)的步骤是:
学习啦在线学习网(1)根据题意,设出变量;
学习啦在线学习网(2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;
(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。
高三数学学科知识点分析2
学习啦在线学习网⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{an}{bn}为等差数列,则{an±bn}与{kan+bn}(k、b为非零常数)也是等差数列.
⑷对任何m、n,在等差数列中有:an=am+(n-m)d(m、n∈N+),特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq.
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
(7)下表成等差数列且公差为m的项ak.ak+m.ak+2m.....(k,m∈N+)组成公差为md的等差数列。
学习啦在线学习网⑻在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
高三数学学科知识点分析3
(1)不等关系
学习啦在线学习网感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
学习啦在线学习网③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
学习啦在线学习网②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式:。
学习啦在线学习网①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
高三数学学科知识点分析相关文章:
★ 高三数学知识点
高三数学学科知识点分析
上一篇:高三数学考试常考的知识点概括
下一篇:高三数学的重要知识难点概括