学习啦>学习方法>各学科学习方法>数学学习方法>

高考数学得高分的技巧

时间: 维维0 分享

数学在高考成绩中占了很大分值,也是最容易拉分的科目,掌握一些答题技巧能够帮你拿到好成绩哦。那么接下来给大家分享一些关于高考数学得高分的技巧,希望对大家有所帮助。

高考数学得高分的技巧

一、构建知识脉络

学习啦在线学习网要学会构建知识脉络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类,定义、性质和判定,并会应用这些概念去解决一些问题。

二、夯实数学基础

学习啦在线学习网在复习过程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合信息,寻找解题途径、优化解题过程。

三、建立病例档案

准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。我们要在教师的指导下做一定数量的数学习题,积累解题经验总结解题思路、形成解题思想、催生解题灵感、掌握学习方法

四、常用公式技巧

准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。

五、强化题组训练

除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思学习啦在线学习网的习惯。反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。

高中函数基础性知识总结

对数函数

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

学习啦在线学习网对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

学习啦在线学习网(5)显然对数函数无界。

指数函数

学习啦在线学习网指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得

可以得到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

学习啦在线学习网(2)指数函数的值域为大于0的实数集合。

学习啦在线学习网(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

一、定义

一般地,对于函数f(x)

学习啦在线学习网(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

学习啦在线学习网(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

学习啦在线学习网(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

学习啦在线学习网(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

学习啦在线学习网说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

学习啦在线学习网二、奇偶函数图像的特征

学习啦在线学习网定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称

学习啦在线学习网点(x,y)(-x,-y)

学习啦在线学习网奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

三、奇偶函数运算

1.两个偶函数相加所得的和为偶函数.

2.两个奇函数相加所得的和为奇函数.

学习啦在线学习网3.一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.

4.两个偶函数相乘所得的积为偶函数.

5.两个奇函数相乘所得的积为偶函数.

6.一个偶函数与一个奇函数相乘所得的积为奇函数.

高中函数答题方法有哪些

学习啦在线学习网(一)巧解函数定义域问题

1.根据函数的解析式求函数的定义域,主要从以下几个方面来考虑:分式中分母不为零;对数的真数大于零;偶次方被开方数大于等于零.

2.复合型函数定义域的问题包含两类:一类是已知原函数的定义域

来求复合函数的定义域,只需满足,解出即可;

一类是已知复合函数的定义域来求原函数的定义域,即内函数的值域为原函数的定义域;

(二)函数解析式的求法

函数解析式的问题是高考的命题热点,其求解方法很多,最常用的有以下几种:

①换元法和配凑法;

②待定系数法:适用于已知函数模型(如指数函数、二次函数等)和模型满足的条件下解析式,一般先设出函数的解析式,然后再根据题设条件待定系数;

③解方程组法;

④函数的性质法,在求某些函数解析式时,只给出了部分条件(如函数的定义域、经过某些特殊点、部分关系式、部分图象特征等)这类问题具有抽象性、综合性、和技巧性等特点,需要利用函数的性质来解;

学习啦在线学习网⑤赋值法:所给函数有两个变量时,可对这两个变量赋予特殊数值代入,或给两个变量赋予一定的关系代入,再用已知条件,可求出未知函数,至于赋予什么特殊值,应根据题目特征而定。

(三)判断函数单调性的方法巧掌握

1.定义法。

学习啦在线学习网2.利用一些常见函数的单调性,如一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的单调性加以判断。

3.图象法。

4.在共同的定义域上,两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数。

5.奇函数在关于原点的对称区间上具有相同的单调性;偶函数在关于原点的对称区间上具有相反的单调性。

学习啦在线学习网6.互为反函数的两个函数在各自的定义域区间上具有相同的单调性。

7.对于复合函数的单调性,遵循“同增异减”的原则,即只有内外层函数相同时则为增函数,一增一减则为减函数。

(四)求分段函数的值域,关键在于“对号入座”:即看清待求函数值的自变量所在区域,再用分段函数的定义即可解决.求分段函数解析式主要是指已知函数在某一区间上的图象或解析式,求此函数在另一区间上的解析式,常用解法是利用函数性质、待定系数法及数形结合法等.画分段函数的图象要特别注意定义域的限制及关键点(如端点、最值点)的准确性.分段函数的性质主要包括奇偶性、单调性、对称性等,它们的判断方法有定义法、图象法等.总而言之,“分段函数分段解决”,若能画出分段函数的大致图象,那么上述许多问题将会很容易解决.

学习啦在线学习网(五)函数值域常见求法和解题技巧

函数的值域与最值是两个不同的概念,一般说来,求出了一个函数的最值,未必能确定该函数的值域,反之,一个函数的值域被确定,这个函数也未必有最大值或最小值.但是,在许多常见的函数中,函数的值域与最值的求法是相通的、类似的.关于求函数值域与最值的方法也是多种多样的,但是有许多方法是类似的,归纳起来,常用的方法有:观察法、配方法、换元法、反函数法、判别式法、不等式法、利用函数的单调性、利用三角函数的有界性、数形结合法等,在选择方法时,要注意所给函数表达式的结构,不同的结构选择不同的解法。

学习啦在线学习网(六)必须掌握的函数的周期性

学习啦在线学习网在解决一些函数的奇偶性、单调性相结合的综合性小问题时,常常涉及到求函数的周期,这就需要我们掌握一些函数的周期性的主要结论:①如果(),那么是周期函数,其中一个周期;②如果(),那么是周期函数,其中一个周期;③如果定义在上的函数有两条对称轴、对称,那么是周期函数,其中一个周期,特别的,如果偶函数的图像关于直线()对称,那么是周期函数,其中一个周期;④如果函数同时关于两点、()成中心对称,那么是周期函数,其中一个周期,特别的,如果奇函数关于点()成中心对称,那么是周期函数,其中一个周期;⑤如果函数的图像关于点()成中心对称,且关于直线()成轴对称,那么是周期函数,其中一个周期,特别的,如果奇函数的图像关于直线()对称,那么是周期函数,其中一个周期;⑥如果或,那么是周期函数,其中一个周期;⑦如果或,那么是周期函数,其中一个周期;⑧如果,那么是周期函数,其中一个周期.

(七)函数奇偶性的判断方法及解题策略

学习啦在线学习网确定函数的奇偶性,一般先考查函数的定义域是否关于原点对称,然后判断与的关系,常用方法有:①利用奇偶性定义判断;②利用图象进行判断,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以避免对自变量的繁琐的分类讨论。

高考数学得高分的技巧相关文章

2020高考数学得高分的技巧大全

高考数学高分经验答题技巧

高考数学高分技巧,不同题型的答题套路,轻松搞定数学8大学习法

高考数学高分的学习方法汇总

高考数学常用答题技巧及考试技巧

高考数学高分攻略

2019高考数学大题的最佳解题技巧及解题思路,清华学长告诉你如何拿...

高考数学有哪些知识点?数学高分100个绝招

高考状元数学高分技巧汇总

高考数学得高分的技巧

数学在高考成绩中占了很大分值,也是最容易拉分的科目,掌握一些答题技巧能够帮你拿到好成绩哦。那么接下来给大家分享一些关于高考数学得高分的技巧,希望对大家有所帮助。高考数学得高分的技巧一、构建知识脉络要学
推荐度:
点击下载文档文档为doc格式

精选文章

  • 2021年高考数学知识点归纳总结
    2021年高考数学知识点归纳总结

    2021年高考数学知识点归纳总结你知道吗?高中数学在学习的过程中,有很多知识点常考点。一起来看看2021年高考数学知识点归纳总结,欢迎查阅!高考数学的

  • 高考数学答题技巧
    高考数学答题技巧

    要想在高考数学中取得良好的成绩,不仅要有扎实的数学基础知识、熟练的解题技巧,还要在临场考试中保持一个良好的心态。那么接下来给大家分享一些关

  • 高考数学填空选择技巧
    高考数学填空选择技巧

    高考数学考试的时候可以用一些答题技巧,来提高自己的正确率和答题速度。那么接下来给大家分享一些关于高考数学填空选择技巧,希望对大家有所帮助

  • 高考数学答题思路
    高考数学答题思路

    高考数学总是有一些规律和方法,只要掌握了方法,就能够帮助自己解题。那么接下来给大家分享一些关于高考数学答题思路,希望对大家有所帮助。高考

845877