学习啦>学习英语>英语阅读>英语文摘>

托福阅读TPO16(试题+答案+译文)第2篇:DevelopmentofthePeriodicTable

时间: 楚薇0 分享

为了帮助大家备考托福阅读,提高成绩,下面小编给大家带来托福阅读TPO16(试题+答案+译文)第2篇:Development of the Periodic Table,希望大家喜欢!

托福阅读TPO16阅读原文

The periodic table is a chart that reflects the periodic recurrence of chemical and physical properties of the elements when the elements are arranged in order of increasing atomic number (the number of protons in the nucleus). It is a monumental scientific achievement, and its development illustrates the essential interplay between observation, prediction, and testing required for scientific progress. In the 1800's scientists were searching for new elements. By the late 1860's more than 60 chemical elements had been identified, and much was known about their descriptive chemistry. Various proposals were put forth to arrange the elements into groups based on similarities in chemical and physical properties. The next step was to recognize a connection between group properties (physical or chemical similarities) and atomic mass (the measured mass of an individual atom of an element). When the elements known at the time were ordered by increasing atomic mass, it was found that successive elements belonged to different chemical groups and that the order of the groups in this sequence was fixed and repeated itself at regular intervals. Thus when the series of elements was written so as to begin a new horizontal row with each alkali metal, elements of the same groups were automatically assembled in vertical columns in a periodic table of the elements. This table was the forerunner of the modern table.

When the German chemist Lothar Meyer and (independently) the Russian Dmitry Mendeleyev first introduced the periodic table in 1869-70, one-third of the naturally occurring chemical elements had not yet been discovered. Yet both chemists were sufficiently farsighted to leave gaps where their analyses of periodic physical and chemical properties indicated that new elements should be located. Mendeleyev was bolder than Meyer and even assumed that if a measured atomic mass put an element in the wrong place in the table, the atomic mass was wrong. In some cases this was true. Indium, for example, had previously been assigned an atomic mass between those of arsenic and selenium. Because there is no space in the periodic table between these two elements, Mendeleyev suggested that the atomic mass of indium be changed to a completely different value, where it would fill an empty space between cadmium and tin. In fact, subsequent work has shown that in a periodic table, elements should not be ordered strictly by atomic mass. For example, tellurium comes before iodine in the periodic table, even though its atomic mass is slightly greater. Such anomalies are due to the relative abundance of the "isotopes" or varieties of each element. All the isotopes of a given element have the same number of protons, but differ in their number of neutrons, and hence in their atomic mass. The isotopes of a given element have the same chemical properties but slightly different physical properties. We now know that atomic number (the number of protons in the nucleus), not atomic mass number (the number of protons and neutrons), determines chemical behavior.

学习啦在线学习网Mendeleyev went further than Meyer in another respect: he predicted the properties of six elements yet to be discovered. For example, a gap just below aluminum suggested a new element would be found with properties analogous to those of aluminum. Mendeleyev designated this element "eka-aluminum" (eka is the Sanskrit word for "next") and predicted its properties. Just five years later an element with the proper atomic mass was isolated and named gallium by its discoverer. The close correspondence between the observed properties of gallium and Mendeleyev’s predictions for eka-aluminum lent strong support to the periodic law. Additional support came in 1885 when eka-silicon, which had also been described in advance by Mendeleyev, was discovered and named germanium.

The structure of the periodic table appeared to limit the number of possible elements. It was therefore quite surprising when John William Strut (Lord Rayleigh, discovered a gaseous element in 1894 that did not fit into the previous classification scheme. A century earlier, Henry Cavendish had noted the existence of a residual gas when oxygen and nitrogen are removed from air, but its importance had not been realized. Together with William Ramsay, Rayleigh isolated the gas (separating it from other substances into its pure state) and named it argon. Ramsay then studied a gas that was present in natural gas deposits and discovered that it was helium, an element whose presence in the Sun had been noted earlier in the spectrum of sunlight but that had not previously been known on Earth. Rayleigh and Ramsay postulated the existence of a new group of elements, and in 1898 other members of the series (neon, krypton, and xenon) were isolated.

托福阅读TPO16阅读试题

学习啦在线学习网1.The phrase interplay in the passage (paragraph 1) is closest in meaning to

A.sequence

学习啦在线学习网B.interpretation

学习啦在线学习网C.requirement

D.interaction

2.According to paragraph 1, what pattern did scientists notice when the known elements were written in order of increasing atomic mass?

A.The elements of the group of alkali metals were the first elements in the order of increasing atomic mass.

B.Repetition of the same atomic masses for elements in different groups appeared.

学习啦在线学习网C.Elements with similar chemical properties appeared in the listing at regular intervals.

D.Elements were chemically most similar to those just before and after them in the order.

学习啦在线学习网3.In paragraph 2, what is the author's purpose in presenting the information about the decision by Meyer and Mendeleyev to leave gaps in the periodic table?

学习啦在线学习网A.To illustrate their confidence that the organizing principles of the periodic table would govern the occurrence of all chemical elements

学习啦在线学习网B.To indicate that some of their analyses of periodic physical and chemical properties were later found to be wrong

学习啦在线学习网C.To support the idea that they were unwilling to place new elements in the periodic table

D.To indicate how they handled their disagreement about where to place new elements

学习啦在线学习网4.What reason does the author provide for the claim that Mendeleyev was bolder than Meyer?(in paragraph 2)

A.Mendeleyev corrected incorrect information Meyer had proposed.

B.Mendeleyev assumed that some information believed to be true about the elements was incorrect.

学习啦在线学习网C.Mendeleyev argued that Meyer had not left enough gaps in the periodic table.

学习啦在线学习网D.Mendeleyev realized that elements were not ordered by atomic mass in the periodic table.

学习啦在线学习网5.According to paragraph 2, why did Mendeleyev suggest changing the atomic mass of indium?

A.Because indium did not fit into the periodic table in the place predicted by its atomic mass.

B.Because there was experimental evidence that the atomic mass that had been assigned to indium was incorrect.

学习啦在线学习网C.Because there was an empty space between cadmium and tin in the periodic table.

学习啦在线学习网D.Because the chemical properties of indium were similar to those of arsenic and selenium.

6.It can be inferred from paragraph 2 that tellurium comes before iodine in the periodic table even though tellurium's atomic mass is slightly greater because

A.iodine is less common than tellurium

B.both iodine and tellurium have no isotopes

学习啦在线学习网C.the chemical behavior of tellurium is highly variable

D.the atomic number of tellurium is smaller than that of iodine

学习啦在线学习网7.The phrase “abundance” in the passage (paragraph 2) is closest in meaning to

A.weight

学习啦在线学习网B.requirement

C.plenty

D.sequence

8.The phrase “analogous to” in the passage (paragraph 3) is closest in meaning to

A.predicted by

B.expected of

学习啦在线学习网C.similar to

学习啦在线学习网D.superior to

9.Paragraph 3 suggests that Mendeleyev predicted the properties of eka-aluminum on the basis of

A.the atomic mass of aluminum

B.the position of the gap in the periodic table that eka-aluminum was predicted to fill

学习啦在线学习网C.the similarity of eka-aluminum to the other five missing elements

学习啦在线学习网D.observation of the properties of gallium

10.It can be inferred from paragraph 3 that the significance of the discovery of gallium was that it supported which of the following?

A.The idea that aluminum was correctly placed in the periodic table.

B.Mendeleyev's prediction that eka-silicon would be discovered next.

C.The organizing principle of the periodic table.

D.The idea that unknown elements existed.

学习啦在线学习网11.Which of the sentences below best expresses the essential information in the highlighted sentence in the passage (paragraph 4)? Incorrect choices change the meaning in important ways or leave out essential information.

A.Ramsay found evidence of helium in the spectrum of sunlight before he discovered that the element was also contained in natural gas deposits on Earth.

学习啦在线学习网B.Ramsay thought he had discovered a new element present in natural gas deposits, but he was wrong since that element had been previously observed elsewhere on Earth.

C.After Ramsay had discovered a new element, called helium, in natural gas deposits on Earth, he also found evidence of its presence in the Sun.

D.Ramsay later discovered that helium, an element that was already known to be present in the Sun, was also present in natural gas deposits on Earth.

学习啦在线学习网12.The word “postulated” in the passage (paragraph 4) is closest in meaning to

学习啦在线学习网A.hypothesized

学习啦在线学习网B.discovered

C.reported

学习啦在线学习网D.generated

13. Look at the four squares [■] that indicate where the following sentence could be added to the passage. Where would the sentence best fit? It was a natural Idea to break up the series of elements at the points where the sequence of chemical groups to which the elements belonged began to repeat itself.

学习啦在线学习网Paragraph1: The periodic table is a chart that reflects the periodic recurrence of chemical and physical properties of the elements when the elements are arranged in order of increasing atomic number (the number of protons in the nucleus). It is a monumental scientific achievement, and its development illustrates the essential interplay between observation, prediction, and testing required for scientific progress. In the 1800's scientists were searching for new elements. By the late 1860's more than 60 chemical elements had been identified, and much was known about their descriptive chemistry. Various proposals were put forth to arrange the elements into groups based on similarities in chemical and physical properties. ■【A】The next step was to recognize a connection between group properties (physical or chemical similarities) and atomic mass (the measured mass of an individual atom of an element). ■【B】When the elements known at the time were ordered by increasing atomic mass, it was found that successive elements belonged to different chemical groups and that the order of the groups in this sequence was fixed and repeated itself at regular intervals. ■【C】Thus when the series of elements was written so as to begin a new horizontal row with each alkali metal, elements of the same groups were automatically assembled in vertical columns in a periodic table of the elements. ■【D】This table was the forerunner of the modern table.

14. Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some sentences do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points.

学习啦在线学习网The periodic table introduced by Meyer and Mendeleyev was the forerunner of the modern table of elements.

学习啦在线学习网A.Lord Rayleigh provided evidence that the structure of the I—Ramsay and Lord Rayleigh challenged the importance of the periodic table limited the potential number of elements.

学习啦在线学习网B.Chemical research that Henry Cavendish had done a century earlier.

C.Isotopes of a given element have exactly the same physical properties, but their chemical properties are slightly different.

D. Mendeleyev and Meyer organized the known elements into a F chart that revealed periodic recurrences of chemical and physical properties.

学习啦在线学习网E.Mendeleyev's successful prediction of the properties of then- r unknown elements lent support to the acceptance of the periodic law.

F.In the 1890's, Ramsay and Lord Rayleigh isolated argon and proposed the existence of a new series of elements.

托福阅读TPO16阅读答案

学习啦在线学习网1.interplay相互作用,所以D的interaction正确。从单词本身看,inter表示在……之间,play是起到什么什么作用,所以interplay是相互作用。原句说观察、预测与实验相互作用,所以答案是interaction,A顺序B解释C要求都错。

2.以increasing atomic mass做关键词定位至倒数第三句,说把元素按照原子量增加的顺序排布,发现相邻元素属于不同的族,族的顺序是固定的,每隔固定数量的元素会重现。所以正确答案是C。A的alkali metals,B的same atomic mass原文都没说;D说相邻元素性质相近与原文相反。

学习啦在线学习网3.修辞目的题,先找到两个人名,说两个人都非常有远见,在周期表中给没发现的元素留了空隙,也就是A说的他们足够自信认为元素周期律适用于所有元素;B的wrong和C的unwilling都跟原文说反;D的disagreement原文没说。

4.修辞目的题,先找到两个人名,说门捷列夫比梅伊尔更胆儿大,他推测如果用来在周期表中排序的原子量与元素周期律互相冲突的时候,就说明原子量错了,也就是选项B说的门捷列夫认为以前被大家所认识到的一些东西是错的。两个人的意见是一样的,只是门捷列夫更进一步,所以A和C说两者的意见有差异不对;D说不是按原子量排序的错。

学习啦在线学习网5.以changing the atomic mass of indium做关键词定位至第六句,说由于元素周期表中砷和硒之间没有空位,所以铟的原子量是错的。因为前面说如果原子量把元素放错了位置,就说明原子量是错的,后一句是为了证明这个观点的,所以答案是A。B的experimental evidence和D的化学性质相似原文都没说;C有space与原文相反。

6.以tellerium coms before iodine做关键词定位至倒数第五句for example处,但这句话只是一个例子,所以往前看,说元素不应该严格按照原子量排列,而且最后一句又说决定元素化学性质的是原子序数,不是原子量,也就是应该按照原序数量排列,所以答案D正确。A谁common谁不common,B有没有同位素还有C的化学性质多变没有信息能推出。

学习啦在线学习网7.abundance丰度,答案是plenty。原句说这种异常,也就是尽管原子量大却排在前面这种异常是由于同位素的什么,然后后面就解释每种同位素的原子序数相同,但中子数不同,导致原子量不同,猜到每种同位素的多少不同,所以答案plenty,B要求D顺序明显不对;A重量不同原文已经直接说了不用再说一遍。

8.analogous to可类比的,相似的,所以答案similar to正确。原句说铝元素之下的空格表明一个性质与铝怎么样的元素的存在,前文都说了相邻的元素属于不同的族,而且族会相隔固定数目的元素出现,而且根据常识也知道元素周期表中上下两元素性质相似,所以答案是similar。A实现预测的是人,不是铝元素的性质;B期待不靠谱;D谁比谁好原文没说。

9.以eka-aluminum做关键词定位至第三句,但这句话只说了预测了eka的性质,没说根据什么预测的,看上一句,说eka是铝之下的那个空格里的元素,而且跟铝性质相似,所以答案是B,eka要填的那个空格。A铝的原子量C另外五个没发现的元素D的gallium原文都没说。

10.gallium做关键词定位至倒数第三句,但这句话只是说命名为GA,没说支持什么,往下看说GA的发现支持了元素周期律,而问题刚好是问GA的发现支持了什么,所以答案是C,元素周期表的组成规律,也就是元素周期律。

11.原文的结构是R研究了一种气体,并且发现这种气体是氦,所以答案是D。A完全搞乱了原文的结构,氦在太阳光谱中不是R发现的;B的转折关系错;C和A的错误相似,氦在太阳光谱中不是R发现的。

学习啦在线学习网12.postulate推断,推测,所以hypothesize正确。原句说这两个人怎么样一个新的元素族的存在,接着后面的人分离出了这些元素,既然是后面的人分离的,discover和report就不对,因为这两个词有他们两个发现的意思;generate完全不对,这两个人不能产生元素。

13.三个过渡点,分别是名词chemical groups,名词sequence和动词词组repeat itself,这几个点都可以确定B或者C是答案,但B前后的atomic mass说明两句话的过渡是非常紧密的,所以B被排除,答案是C。

14.Lord选项错,原文没说他的研究提供了元素周期表限制元素数量的证据,不选。Ramsay and Lord选项错,原文没说他们俩挑战了卡文迪许,不选。Isotopes选项是原文第二段中的一个细节,不选。Mendeleyev and Meyer选项对应原文第一段后半部分,正确。Mendeleyev’s选项对应原文第三段最后两句,正确。In the 1890’s选项对应全文最后一句话,正确。

托福阅读TPO16阅读译文

学习啦在线学习网  元素周期表是按原子序数(元素原子核中质子的数量)由小到大依次排列,反映化学周期性和元素的物理特征的图表。这一科学发现具有里程碑的意义,它进一步证明了科学探索过程中观察、预测和实证之间的根本联系。19世纪一开始,科学家们不断探索新的元素。到19世纪60年代后期,已经发现了60种以上的化学元素,而许多描述性化学被认知。人们提出各种建议,认为该基于化学和物理特征的相似性将化学元素排列成组。他们接下来又证实了元素的族群特性(物理或是化学相似性)和原子质量(一种元素的单个原子的测量质量)之间存在联系。当时元素还是按照原子质量从小到大排列,人们发现,一些具备连续性的元素却分属不同的化学组,并且发现在这种排列方式下,元素群组的顺序是固定的且定期重复。因此,当每一新行都以碱性金属元素开始并逐步将这一系列的元素排列出来时,元素周期表中同一组中的元素就会自动归入一个垂直纵列中。这个表格就是现代元素周期表的雏形。

学习啦在线学习网  当德国化学家迈耶(Lother Meyer)和(彼此独立的)俄国化学家门捷列夫在1869年到1870年间首次发布元素周期表时,有三分之一的天然化学元素还没被发现。然而这两位化学家都极富远见,他们在周期表上留白,对元素物理性和化学性的分析空白处还有新的元素有待发现。门捷列夫比迈耶更为大胆,他甚至做出假设,如果周期表按原子质量排列,但元素位置不对的话,那么原子质量也是错的。在某些情况下,这个设想是正确的。以铟为例,先前测量出铟的原子质量在砷和硒之间。但是因为在周期表中这两个元素之间没有缝隙,由此门捷列夫提出铟的原子质量变为截然不同的一个值,这样就可以将其置于镉和锡之间的空位。事实上,接下来的研究表明,元素周期表中元素不能严格按照原子质量排列。例如,尽管碲的原子质量比碘略大,但在元素周期表中,它却排在碘前面。出现这种反常现象,主要是因为相对丰富的“同位素 ”或者各种元素的多样性。同一元素的所有同位素具有相同的质子数,但中子数不同,因此它们的原子质量也不一样。一个特定元素的同位素具有相同的化学特征,但在物理性质上有一些细微差异。现在我们知道,是原子数目(原子核中质子的数量)而非原子质量(质子和中子的数量)决定着元素的化学性质。

  门捷列夫在另一个研究上也比迈耶更为深入:他预测还有六种元素的性质待被发现。例如,就在铝下面有一个空位,这表明还有一个性质和铝类似的新元素存在。门捷列夫将该元素定义为“铝下元素 ”(eka是梵语词,意思是 “下一个”)并且还预测了其性质。仅仅5年之后,原子质量相吻合的元素就被分离出来,发现者将其命名为“镓”。镓所表现出的特性和门捷列夫对“铝下元素”的预测一一对应,这为元素法则提供了一个强有力的依据。还有一个例证,1885年发现“硅下元素”,同样为门捷列夫所预测,后来命名为锗。

  元素周期表的框架似乎限制了可能存在的元素数量。因此,当约翰?威廉姆?斯特拉特(瑞利男爵),在1894年发现一种气态元素不能适应之前的元素表时会非常惊讶。一个世纪以前,亨利?卡文迪许就注意到,当氧气和氮气从空气中被移除后仍然有残余气体存在,但当时没人意识到其中的重要性。瑞利和威廉?拉姆齐一道,共同分离出一种气体(将之与其他物质隔离并存于一个真空环境)并将其命名为氩。拉姆齐经过研究又发现了另一种存在于自然界中的气体元素——氦,该元素在太阳中存在,并且很早就被发现存在于太阳光谱中,但是之前并没有在地球上找到过。瑞利和拉姆齐做出假设,认为存在一组新元素, 1898年,这一系列元素中的其他元素(氖,氪,氙)也被成功分离出来。

  具有相同质子数,不同中子数(或不同质量数)同一元素的不同核素互为同位素(Isotopes)。

  Eka是一个用来为在元素周期表中位于某个元素下面的位置的化学元素命名的前缀。前缀eka-尤其用于命名尚未发现的元素。例如,在发现锗以前它被称为硅下元素(eka-硅,ekasilicon)。

托福阅读TPO16(试题+答案+译文)第2篇:Development of the Periodic Table相关文章

托福阅读TPO16(试题+答案+译文)第1篇:TradeandtheAncientMiddleEast

托福阅读TPO25(试题+答案+译文)第1篇:ThesurfaceofMars

托福阅读TPO7(试题+答案+译文)第1篇:TheGeologicHistoryofthe...

托福阅读TPO20(试题+答案+译文)第3篇:FossilPreservation

托福阅读TPO16(试题+答案+译文)第2篇:DevelopmentofthePeriodicTable

为了帮助大家备考托福阅读,提高成绩,下面小编给大家带来托福阅读TPO16(试题+答案+译文)第2篇:Development of the Periodic Table,希望大家喜欢!托福阅读TPO16阅读原文The periodic table is a chart that reflects the periodic recurrence of chemical and physical properties of the elements when the elements are ar
推荐度:
点击下载文档文档为doc格式

精选文章

  • 托福阅读考试常见词汇汇总整理
    托福阅读考试常见词汇汇总整理

    托福阅读考试当中,词汇题占据着托福考生的近三分之一的题目量,如果你想要托福阅读获得高分,那么词汇题你就必须要都做对。对于托福阅读词汇题,

  • 托福阅读中的易错词汇积累
    托福阅读中的易错词汇积累

    为了帮助大家高效备考托福,学习啦为大家带来托福阅读中的易错词汇积累,希望对大家托福备考有所帮助。更多精彩尽请关注学习啦!托福阅读中的易错词

  • 新托福阅读考试中5种常见的倒装句式
    新托福阅读考试中5种常见的倒装句式

    倒装句在托福阅读中十分常见,那么托福阅读的倒装句都有哪些形式呢?下面是学习啦为大家带来的托福备考经验 5种常见的倒装句式,希望能够帮助大家更

  • 托福阅读需要准备多久
    托福阅读需要准备多久

    学习啦在线学习网为了帮助大家备考,以下是托福阅读需要提前多久备考内容,托福阅读对于考生来说是比较难的一个单元,希望本文对您的托福阅读提高有所帮助。托福阅

486834