中考数学备考指导:复习攻略和四点建议
学习啦在线学习网中考数学备考指导:复习攻略和四点建议
学习啦在线学习网 初中的数学是不是让你抓破脑袋?有哪些好的数学学习方法呢?以下是小编给大家带来的中考数学备考指导:复习攻略和四点建议,仅供考生参考,欢迎大家阅读!
中考数学复习指导:四点建议
学习啦在线学习网 第一,要重视数学概念的复习。概念是数学的基础,复习概念不仅要知其然,还要知其所以然。数学中考中会涉及到很多知识点,许多同学只注重记,而忽视了对其背景的理解,对于每个知识点,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。
学习啦在线学习网 第二,要注意课内重视听讲,课后及时归纳整理。上复习课时要紧跟老师的思路,积极展开思维预测下面的步骤,听讲要做到手到、口到、眼到、耳到、心到。课后要认真独立完成作业,勤于思考。在课后要及时对做过的试卷和练习进行归纳和整理,对于一些易错题,可备一本错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
学习啦在线学习网 第三,要适当多做题,养成良好的解题习惯,提高解题能力。要想考好数学,多做题目是难免的。刚开始要从基础题入手,反复练习打好基础,再找一些提高题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。平时要总结各种常见题的基本解题思路,如:图形运动类、图形变换类、归纳探索类、分类讨论类等。了解、熟悉、掌握这些题型的特点、规律、基本解题思路,通过一定数量题的练习,然后,再总结,再训练就可提高解题能力。
学习啦在线学习网 第四,考试时需要掌握一些技巧。当试卷发下来后,应先大致看一下题量,分配好时间,解题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑。对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处,也是可以运用的。另外,考试时要冷静,如遇到不会的题目,不妨用一用自我安慰的心理,可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
正确的学习态度和科学的学习方法是考好中学数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,希望大家能从现在开始行动起来,充分利用时间,为自己的中考历程写上靓丽的一笔!
中考数学备考指导:数学复习攻略
为了学好初三数学,不妨从以下几个方面给予重视:
学习啦在线学习网 (一)狠抓“双基”训练。
“双基”即基础知识与基本技能。基础知识是指数学概念、定理、法则、公式以及各种知识之间的内在联系;基本技能是一种较稳定的心理因素,是一种已经程式化了的动作,初中数学基本技能包括运算技能、画图技能、运用数字语言的技能、推理论证的技能等。只有扎实地掌握“双基”,才能灵活应用、深入探索,不断创新。
(二)注意前后联系。
初三数学是以前两年的学习内容为基础的,可以用来复习、巩固相关的内容,同时新知识的学习常常由旧知识引入或要用到前面所学过的内容,甚至是已有知识的综合、提高与延续。因此在学习中,要注意前后知识的联系,以便达到巩固与提高的目的。
(三)重视归纳梳理。
初三数学各章内容丰富、综合性强,学习过程中要及时进行归纳梳理,以便于对知识深入理解,系统掌握,灵活运用。要学会从横向、纵向两方面归纳梳理知识。纵向主要是按照知识的来龙去脉进行总结归纳,如学完函数,可按正比例函数,一次函数、二次函数、反比例函数来归纳知识。横向是平行的、相关的知识的整合,通过对比指出其区别与联系,如学完二次函数之后,可把二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)之间的联系进行归纳,这样既可以巩固新、旧知识,更可以提高综合运用知识的能力,收到事半功倍的效果。
学习啦在线学习网 (四)掌握基本模型,找出本质属性。
中学的“数学模型”常常是指反映数学知识规律的结论和基本几何图形。初中代数中,运算法则、性质、公式、方程、函数解析式等均是代数的模型;平面几何中,各类知识中的基本图形均是几何模型。通过对这些基本模型的研究,能够更好地掌握知识的本质属性,沟通知识间的联系。重要的公式、定理是知识系统的主干,我们不仅要知其内容,还应该搞清其来龙去脉,理解其本质。如一元二次方程的求根公式的推导,不仅体现方法,而且由此公式可得出两根与系数的关系,还可类似地推出二次函数的顶点坐标公式,所以一定要掌握推导过程。再如,相交弦定理、切割线定理、割线定理、切线长定理尽管形式上不尽相同,但是它们之间都有着某种内在联系。
联系1:由两条弦的交点运动及割线的运动将四条定理结论统一到PA·PB=PC·PD上来;
学习啦在线学习网 联系2:结论形式上的统一:PA·PB=22OPR-(O为圆心,P为两弦交点)。
所以也把相交弦定理、切割线定理、割线定理统称为“圆幂定理”,这也是几何的一个基本模型。
(五)掌握数学思想方法。
数学思想方法是解决数学问题的灵魂,是形成数学能力、数学意识的桥梁,是灵活运用数学知识、技能的关键。在解数学综合题时,尤其需要用数学思想方法来统帅,去探求解题思路,优化解题过程,验证所得结论。
学习啦在线学习网 在初三这一年的数学学习中,常用的数学方法有:消元法、换元法、配方法、待定系数法、反证法、作图法等;常用的数学思想有:转化思想,函数与方程思想、数形结合思想、分类讨论思想。转化思想就是把待解决或难解决的问题,通过某种转化手段,使它转化成已经解决或比较容易解决的问题,从而求得原问题的解答。转化思想是一种最基本的数学思想,如在运用换元法解方程时,就是通过“换元”这个手段,把分式方程转化为整式方程,把高次方程转化为低次方程,总之把结构复杂的方程化为结构简单的方程。学习和掌握转化思想有利于我们从更高的层次去揭示、把握数学知识、方法之间的内在联系,树立辩证的观点,提高分析问题和解决问题的能力。函数思想就是用运动变化的观点,分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系表示出来并加以研究,从而使问题得到解决。方程思想,就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。方程思想在解题中有着广泛的应用,解题时要善于从题目中挖掘等量关系,能够根据题目的特点选择恰当的未知数,正确列出方程或方程组。数形结合思想就是把问题中的数量关系和几何图形结合起来,使“数”与“形”相互转化,达到抽象思维与形象思维的结合,从而使问题得以化难为易。具体来说,就是把数量关系的问题,转化为图形问题,利用图形的性质得出结论,再回到数量关系上对问题做出回答;反过来,把图形问题转化成一个数量关系问题,经过计算或推论得出结论再回到图形上对问题做出回答,这是解决数学问题常用的一种方法。分类讨论思想是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。分类依赖于标准的确定,不同的标准会有不同的分类方式。总之,数学思想方法是分析解决数学问题的灵魂,也是训练提高数学能力的关键,更是由知识型学习转向能力型学习的标志。
学习啦在线学习网 (六)提高数学能力。
学习啦在线学习网 数学能力的提高,是我们数学学习的主要目的,能力培养是目前中学数学教育中倍受关注的问题,因此能力评价也就成为数学考查中的热点。
学习啦在线学习网 (1)熟练准确的计算能力
学习啦在线学习网 数式运算、方程的解法、几何量的计算,这些都是初中数学重点解决的问题,应该做到准确迅速。
(2)严密有序的分析、推理能力
学习啦在线学习网 推理、论证体现的是逻辑思维能力,几何问题较多。提高这一能力,应从以下几个方面着手:
(ⅰ)认清问题中的条件、结论,特别要注意隐含条件;
(ⅱ)能正确地画出图形;
学习啦在线学习网 (ⅲ)论证要做到步步有依据;
学习啦在线学习网 (ⅳ)学会执果索因的分析方法。
学习啦在线学习网 (3)直观形象的数形结合能力
学习啦在线学习网 “数”和“形”是数学中两个最基本的概念,研究数学问题时,一定要学会利用数形结合的数学思想方法。