初二数学知识点总结
初二年级学生,科目增加、内容拓宽、知识深化,尤其是数学从具体发展到抽象,从文字发展到符号,由静态发展到动态。初二数学知识点都有哪些呢?接下来学习啦小编为你整理了初二数学知识点总结,一起来看看吧。
初二数学知识点:轴对称
一、定义
1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线[成轴]对称。
学习啦在线学习网 2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。
学习啦在线学习网 3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
4、有两边相等的三角形叫做等腰三角形。
5、三条边都相等的三角形叫做等边三角形。
二、重点
学习啦在线学习网 1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
学习啦在线学习网 2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5、如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。
6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。新图形上的每一点,都是原图形上的某一点关于直线的对称点。连接任意一对对应点的线段被对称轴垂直平分。
7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。
学习啦在线学习网 等腰三角形两腰上的高或中线相等。
等腰三角形两底角平分线相等。
等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离。
等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等。
学习啦在线学习网 8、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等[等角对等边]。
学习啦在线学习网 [如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。]
9、等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。
10、等边三角形的判定:等边三角形的三个内角都相等,并且每一个角都等于60°。三个角都相等的三角形是等边三角形。有一个角是60°的等腰三角形是等边三角形。
学习啦在线学习网 11、直角三角形的性质之一:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
12、在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。
三、注意
学习啦在线学习网 1、(x,y)关于原点对称(-x。-y)。关于x轴对称(x,-y)。关于y轴对称(-x,y)
学习啦在线学习网 2、用坐标表示轴对称。
初二数学知识点:一次函数
学习啦在线学习网 1、正比例函数和一次函数
(1)一次函数的形式y=kx+b(k,b为常数,k≠0),
正比例函数的形式y=kx(k为常数,k≠0)正比例函数是特殊的一次函数
学习啦在线学习网 (2)、一次函数、正比例函数图像的主要特征:
一次函数y=kx+b的图像是经过点(0,b)的直线;正比例函数y=kx的图像是经过原点(0,0)的直线。
学习啦在线学习网 5、一次函数的性质和正比例函数的性质
学习啦在线学习网 1)当k>0时,图第一、三象限
2)当k<0时,图第二、四象限,
b代表与y轴交点的纵坐标。
当b>0直线交y轴正半轴b<0直线交y轴负半轴
3、一次函数与y轴的交点坐标为(0,b);一次函数与x轴的交点坐标,即(—b/k,0)
4、直线y=2x向上平移三个单位得到y=2x+3,向下平移三个单位得到y=2x-3
3一次函数与二元一次方程(组)的关系:
(1)一次函数与二元一次方程的关系:
学习啦在线学习网 直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解
5、个位数字为x十位数字为y的两位数为10y+x
初二数学知识点:几何概念
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
二 定理:中心对称的有关定理
学习啦在线学习网 ※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
三 公式:
1.S菱形 =ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)
2.S平行四边形 =ah. a为平行四边形的边,h为a上的高)
学习啦在线学习网 3.S梯形 =(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
四 常识:
※1.若n是多边形的边数,则对角线条数公式是:.
2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
猜你感兴趣的:
初二数学知识点总结
上一篇:初3数学公式大全
下一篇:高中数学所有公式定理口诀