学习啦 > 学习方法 > 各学科学习方法 > 数学学习方法 >

小学数学鸡兔同笼问题的解题方法

时间: 曾扬1167 分享

  鸡兔同笼问题,是小学阶段一个非常重要的数学模型。解决这类问题可以极大的拓宽孩子的解题思路,帮其拓宽解题思路,加深对所学知识的理解。今天除了常规解法之外,我也提供另外几种非常规的解法,下面来一起看看吧。

  小学数学鸡兔同笼6种解题方法

  01极端假设法

  假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。这是把兔看作鸡的缘故。而把一只兔看成一只鸡,足数就会少4-2=2(只)。因此兔有20÷2=10(只),鸡有40-10=30(只)。

  02任意假设

  假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。通过比较第一类和第二类解法,我们不难看出:任意假设是极端假设的一般形式,而极端假设是任意假设的特殊形式,也是简便解法。

  03除减法

  用脚的总数除以2,也就是100÷2=50(只)。这里我们可以设想为,每只鸡都是一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着。这样在50这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从50减去总头数40,剩下的就是兔子头数10只。有10只兔子当然鸡就有30只。

  这种解法其实就是《孙子算经》中记载的:做一次除法和一次减法,马上能求出兔子数,多简单!这也是文章前面这个数学段子中趣解的由来,我也课堂当中也经常喜欢给学生讲解这种解法。

学习啦在线学习网   04第四类解法:盈亏法

  把总足数100看作标准数。假设鸡有25只,兔则有40-25=15(只),那么它们有足2×25+4×15=110(只),比标准数盈余110-100=10(只);再假设鸡有32只,兔则有40-32=8(只),那么它们有足2×32+4×8=96(只),比标准数不足100-96=4(只)。根据盈不足术公式,可以求出鸡的只数。即鸡有(25×4+32×10)÷(4+10)=30(只),兔则有40-30=10(只)。

  05比例分配

  40个头一共100只足,平均每个头有足100÷40=2.5(只)。而一只鸡比平均数少(2.5-2)只足,一只兔比平均数多(4-2.5)只足。根据平均问题的“移多补少”思想:超出总数等于不足总数,故知:(2.5-2)×鸡的只数=(4-2.5)×兔的只数。因此,鸡的只数︰兔的只数=(4-2.5):(2.5-2)=1.5:0.5=3:1按比例分配可以求出鸡兔各有多少只。即鸡有40×3/(3+1)=30(只),而兔则有40×1/(3+1)=10(只)。

  06列方程

  设鸡有x只,那么兔有(40-x)只。根据题意列方程:2x+4(40-x)=100 解这个方程得:x=30 40-x=40-30=10那么鸡有30只,兔有10只。当然方程是一种万能和傻瓜式的解法,这里就不多说了。

3966610