2023高考数学必考题型及答题技巧
2023高考数学必考题型及答题技巧(详细)
数学向来是很多同学最头疼的科目,如果知道高考数学的解题技巧、常考题型可以带来很大帮助,还包括数学必背公式等。以下是小编准备的2023高考数学必考题型及答题技巧,欢迎借鉴参考。
高考数学万能解题方法
1、思路思想提炼法催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。
学习啦在线学习网2、典型题型精熟法抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。
学习啦在线学习网3、逐步深入纠错法巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。
高考数学答题技巧
高考数学万能解题法——熟悉基本的解题步骤和解题方法
解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。
高考数学万能解题法——审题要认真仔细
对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。
高考数学万能解题法——常见函数值域或最值的经典求法
函数值域是函数概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终。而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求。所以,我们应该掌握一些简单函数的值域求解的基本方法。
学习啦在线学习网高考数学万能解题法——学会画图
画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
学习啦在线学习网因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
高考数学万能解题法——离心率的求值或取值范围问题
圆锥曲线的离心率是近年高考的.一个热点,有关离心率的试题究其原因,一是贯彻高考命题“以能力立意”的指导思想,离心率问题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地反映考生对数学思想和方法的掌握程度;二是圆锥曲线是高中数学的重要内容,具有数学的实用性和美学价值,也是以后进一步学习的基础。
高考数学万能解题法——极端性原则
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
学习啦在线学习网高考数学万能解题法——数列求和方法
数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。
高考数学常见题型答题技巧
1、解决绝对值问题
主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:
学习啦在线学习网①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
学习啦在线学习网②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
学习啦在线学习网③两边平方法:适用于两边非负的方程或不等式。
学习啦在线学习网④几何意义法:适用于有明显几何意义的情况。
2、因式分解
学习啦在线学习网根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
提取公因式
选择用公式
十字相乘法
分组分解法
拆项添项法
3、配方法
学习啦在线学习网利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:
4、换元法
解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:
设元→换元→解元→还元
5、待定系数法
待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写
6、复杂代数等式
学习啦在线学习网复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:
(-----)(----)=0两种情况为或型
②配成平方型:
学习啦在线学习网(----)2+(----)2=0两种情况为且型
学习啦在线学习网7、数学中两个最伟大的解题思路
学习啦在线学习网(1)求值的思路列欲求值字母的方程或方程组
(2)求取值范围的思路列欲求范围字母的不等式或不等式组
8、化简二次根式
学习啦在线学习网基本思路是:把√m化成完全平方式。即:
9、观察法
10、代数式求值
方法有:
(1)直接代入法
(2)化简代入法
(3)适当变形法(和积代入法)
注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程
学习啦在线学习网方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:
(1)按照类型求解
(2)根据需要讨论
(3)分类写出结论
12、恒相等成立的有用条件
(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
学习啦在线学习网(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。
学习啦在线学习网13、恒不等成立的条件
由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:
14、平移规律
学习啦在线学习网图像的平移规律是研究复杂函数的重要方法。平移规律是:
15、图像法
学习啦在线学习网讨论函数性质的重要方法是图像法——看图像、得性质。
学习啦在线学习网定义域图像在X轴上对应的部分
值域图像在Y轴上对应的部分
单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。
学习啦在线学习网最值图像点处有值,图像最低点处有最小值
奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数
16、函数、方程、不等式间的重要关系
方程的根
学习啦在线学习网高考数学答题技巧及方法
学习啦在线学习网1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
学习啦在线学习网2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4、选择与填空中出现不等式的题目,优选特殊值法;
学习啦在线学习网5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
学习啦在线学习网8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
学习啦在线学习网10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
学习啦在线学习网11、数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
学习啦在线学习网13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
14、概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
学习啦在线学习网15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
17、绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
18、与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。